/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 203 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 54 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 23 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: even, half, plus, times They will be analysed ascendingly in the following order: even < times half < times plus < times ---------------------------------------- (6) Obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: even, half, plus, times They will be analysed ascendingly in the following order: even < times half < times plus < times ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s3_0(*(2, n5_0))) -> true, rt in Omega(1 + n5_0) Induction Base: even(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) true Induction Step: even(gen_0':s3_0(*(2, +(n5_0, 1)))) ->_R^Omega(1) even(gen_0':s3_0(*(2, n5_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: even, half, plus, times They will be analysed ascendingly in the following order: even < times half < times plus < times ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: even(gen_0':s3_0(*(2, n5_0))) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, plus, times They will be analysed ascendingly in the following order: half < times plus < times ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n149_0))) -> gen_0':s3_0(n149_0), rt in Omega(1 + n149_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s3_0(*(2, +(n149_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n149_0)))) ->_IH s(gen_0':s3_0(c150_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: even(gen_0':s3_0(*(2, n5_0))) -> true, rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n149_0))) -> gen_0':s3_0(n149_0), rt in Omega(1 + n149_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times They will be analysed ascendingly in the following order: plus < times ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n355_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n355_0, b)), rt in Omega(1 + n355_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n355_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n355_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c356_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) half(0') -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) Types: even :: 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s if_times :: true:false -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: even(gen_0':s3_0(*(2, n5_0))) -> true, rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n149_0))) -> gen_0':s3_0(n149_0), rt in Omega(1 + n149_0) plus(gen_0':s3_0(n355_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n355_0, b)), rt in Omega(1 + n355_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times