/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 236 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, odd They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (6) Obligation: TRS: Rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: odd, cond They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: odd(gen_0':s4_0(*(2, n6_0))) -> false, rt in Omega(1 + n6_0) Induction Base: odd(gen_0':s4_0(*(2, 0))) ->_R^Omega(1) false Induction Step: odd(gen_0':s4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) odd(gen_0':s4_0(*(2, n6_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: odd, cond They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: odd(gen_0':s4_0(*(2, n6_0))) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond