/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence even(s(s(x))) ->^+ even(x) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL