/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 268 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> s:0' -> s:0' -> cond true :: true:false gr :: s:0' -> s:0' -> true:false p :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, gr They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (6) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> s:0' -> s:0' -> cond true :: true:false gr :: s:0' -> s:0' -> true:false p :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_s:0'4_0(0), gen_s:0'4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> s:0' -> s:0' -> cond true :: true:false gr :: s:0' -> s:0' -> true:false p :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), p(x), s(y)) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> s:0' -> s:0' -> cond true :: true:false gr :: s:0' -> s:0' -> true:false p :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: cond