/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 234 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0)), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, even, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (6) Obligation: TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Induction Base: even(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) true Induction Step: even(gen_0':s:y4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) even(gen_0':s:y4_0(*(2, n6_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond