/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 216 ms] (12) BOUNDS(1, n^1) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: cond(true, [], y) cond(true, x, []) The defined contexts are: cond([], x1, x2) [] just represents basic- or constructor-terms in the following defined contexts: cond([], x1, x2) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: cond(v0, v1, v2) -> null_cond [0] And the following fresh constants: null_cond ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] cond(v0, v1, v2) -> null_cond [0] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> null_cond true :: true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s false :: true:false s :: 0:s -> 0:s null_cond :: null_cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 null_cond => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 1 }-> cond(gr(x, y), y, x) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 cond(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[cond(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[gr(V1, V, Out)],[V1 >= 0,V >= 0]). eq(cond(V1, V, V2, Out),1,[gr(V4, V3, Ret0),cond(Ret0, V3, V4, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). eq(gr(V1, V, Out),1,[],[Out = 0,V = V5,V5 >= 0,V1 = 0]). eq(gr(V1, V, Out),1,[],[Out = 1,V6 >= 0,V1 = 1 + V6,V = 0]). eq(gr(V1, V, Out),1,[gr(V7, V8, Ret1)],[Out = Ret1,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). eq(cond(V1, V, V2, Out),0,[],[Out = 0,V10 >= 0,V2 = V11,V9 >= 0,V1 = V10,V = V9,V11 >= 0]). input_output_vars(cond(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(gr(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [gr/3] 1. recursive : [cond/4] 2. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into gr/3 1. SCC is partially evaluated into cond/4 2. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations gr/3 * CE 7 is refined into CE [8] * CE 6 is refined into CE [9] * CE 5 is refined into CE [10] ### Cost equations --> "Loop" of gr/3 * CEs [9] --> Loop 7 * CEs [10] --> Loop 8 * CEs [8] --> Loop 9 ### Ranking functions of CR gr(V1,V,Out) * RF of phase [9]: [V,V1] #### Partial ranking functions of CR gr(V1,V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V V1 ### Specialization of cost equations cond/4 * CE 4 is refined into CE [11] * CE 3 is refined into CE [12,13,14,15] ### Cost equations --> "Loop" of cond/4 * CEs [15] --> Loop 10 * CEs [14] --> Loop 11 * CEs [13] --> Loop 12 * CEs [12] --> Loop 13 * CEs [11] --> Loop 14 ### Ranking functions of CR cond(V1,V,V2,Out) #### Partial ranking functions of CR cond(V1,V,V2,Out) ### Specialization of cost equations start/3 * CE 1 is refined into CE [16,17,18,19] * CE 2 is refined into CE [20,21,22,23] ### Cost equations --> "Loop" of start/3 * CEs [23] --> Loop 15 * CEs [21] --> Loop 16 * CEs [19] --> Loop 17 * CEs [18,22] --> Loop 18 * CEs [16,17] --> Loop 19 * CEs [20] --> Loop 20 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of gr(V1,V,Out): * Chain [[9],8]: 1*it(9)+1 Such that:it(9) =< V1 with precondition: [Out=0,V1>=1,V>=V1] * Chain [[9],7]: 1*it(9)+1 Such that:it(9) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [8]: 1 with precondition: [V1=0,Out=0,V>=0] * Chain [7]: 1 with precondition: [V=0,Out=1,V1>=1] #### Cost of chains of cond(V1,V,V2,Out): * Chain [14]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [13,14]: 2 with precondition: [V1=1,V=0,Out=0,V2>=0] * Chain [12,14]: 2 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [12,13,14]: 4 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [11,14]: 1*s(1)+2 Such that:s(1) =< V with precondition: [V1=1,Out=0,V>=1,V2>=V] * Chain [10,14]: 1*s(2)+2 Such that:s(2) =< V2 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [10,11,14]: 2*s(1)+4 Such that:aux(1) =< V2 s(1) =< aux(1) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] #### Cost of chains of start(V1,V,V2): * Chain [20]: 1 with precondition: [V1=0,V>=0] * Chain [19]: 4 with precondition: [V1>=0,V>=0,V2>=0] * Chain [18]: 1*s(6)+1*s(7)+2 Such that:s(7) =< V1 s(6) =< V with precondition: [V1>=1,V>=V1] * Chain [17]: 3*s(9)+4 Such that:s(8) =< V2 s(9) =< s(8) with precondition: [V1=1,V2>=1,V>=V2+1] * Chain [16]: 1 with precondition: [V=0,V1>=1] * Chain [15]: 1*s(10)+1 Such that:s(10) =< V with precondition: [V>=1,V1>=V+1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [20] with precondition: [V1=0,V>=0] - Upper bound: 1 - Complexity: constant * Chain [19] with precondition: [V1>=0,V>=0,V2>=0] - Upper bound: 4 - Complexity: constant * Chain [18] with precondition: [V1>=1,V>=V1] - Upper bound: V1+V+2 - Complexity: n * Chain [17] with precondition: [V1=1,V2>=1,V>=V2+1] - Upper bound: 3*V2+4 - Complexity: n * Chain [16] with precondition: [V=0,V1>=1] - Upper bound: 1 - Complexity: constant * Chain [15] with precondition: [V>=1,V1>=V+1] - Upper bound: V+1 - Complexity: n ### Maximum cost of start(V1,V,V2): max([V1+V+1,max([3,nat(V2)*3+3])])+1 Asymptotic class: n * Total analysis performed in 155 ms. ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, gr They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (18) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: TRS: Rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond