/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 249 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false and :: true:false -> true:false -> true:false eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond1, cond2, gr, eq They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 eq < cond2 ---------------------------------------- (6) Obligation: TRS: Rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false and :: true:false -> true:false -> true:false eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2, eq They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 eq < cond2 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false and :: true:false -> true:false -> true:false eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2, eq They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 eq < cond2 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false and :: true:false -> true:false -> true:false eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: eq, cond1, cond2 They will be analysed ascendingly in the following order: cond1 = cond2 eq < cond2 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n283_0), gen_0':s4_0(n283_0)) -> true, rt in Omega(1 + n283_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n283_0, 1)), gen_0':s4_0(+(n283_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n283_0), gen_0':s4_0(n283_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: cond1(true, x, y) -> cond2(gr(y, 0'), x, y) cond2(true, x, y) -> cond2(gr(y, 0'), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x eq(0', 0') -> true eq(s(x), 0') -> false eq(0', s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false and :: true:false -> true:false -> true:false eq :: 0':s -> 0':s -> true:false s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) eq(gen_0':s4_0(n283_0), gen_0':s4_0(n283_0)) -> true, rt in Omega(1 + n283_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond2, cond1 They will be analysed ascendingly in the following order: cond1 = cond2