/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,0(),u,0()){x -> s(s(x))} = f(s(s(x)),0(),u,0()) ->^+ f(x,0(),minus(minus(u,s(s(x))),s(x)),0()) = C[f(x,0(),minus(minus(u,s(s(x))),s(x)),0()) = f(x,0(),u,0()){u -> minus(minus(u,s(s(x))),s(x))}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs f#(0(),y,0(),u) -> c_1() f#(0(),y,s(z),u) -> c_2() f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(0()) -> c_5() perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),y,0(),u) -> c_1() f#(0(),y,s(z),u) -> c_2() f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(0()) -> c_5() perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Strict TRS: f(0(),y,0(),u) -> true() f(0(),y,s(z),u) -> false() f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u) f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) perfectp(0()) -> false() perfectp(s(x)) -> f(x,s(0()),s(x),s(x)) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/4,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(0(),y,0(),u) -> c_1() f#(0(),y,s(z),u) -> c_2() f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(0()) -> c_5() perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),y,0(),u) -> c_1() f#(0(),y,s(z),u) -> c_2() f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(0()) -> c_5() perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/4,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,5} by application of Pre({1,2,5}) = {4,6}. Here rules are labelled as follows: 1: f#(0(),y,0(),u) -> c_1() 2: f#(0(),y,s(z),u) -> c_2() 3: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) 4: f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) 5: perfectp#(0()) -> c_5() 6: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) ** Step 1.b:4: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Weak DPs: f#(0(),y,0(),u) -> c_1() f#(0(),y,s(z),u) -> c_2() perfectp#(0()) -> c_5() - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/4,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 2:S:f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) -->_2 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_1 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_2 perfectp#(0()) -> c_5():6 -->_1 perfectp#(0()) -> c_5():6 -->_4 f#(0(),y,s(z),u) -> c_2():5 -->_2 f#(0(),y,s(z),u) -> c_2():5 -->_1 f#(0(),y,s(z),u) -> c_2():5 -->_4 f#(0(),y,0(),u) -> c_1():4 -->_2 f#(0(),y,0(),u) -> c_1():4 -->_1 f#(0(),y,0(),u) -> c_1():4 -->_4 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_2 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_4 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_2 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 3:S:perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) -->_1 f#(0(),y,s(z),u) -> c_2():5 -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 4:W:f#(0(),y,0(),u) -> c_1() 5:W:f#(0(),y,s(z),u) -> c_2() 6:W:perfectp#(0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: f#(0(),y,0(),u) -> c_1() 6: perfectp#(0()) -> c_5() 5: f#(0(),y,s(z),u) -> c_2() ** Step 1.b:5: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/4,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 2:S:f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)) -->_2 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_1 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_4 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_2 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 -->_4 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_2 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 3:S:perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(s(x),minus(y,x),z,u),f#(x,u,z,u)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) ** Step 1.b:6: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) The strictly oriented rules are moved into the weak component. *** Step 1.b:6.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {3}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(f) = [8] x1 + [1] x2 + [1] x4 + [1] p(false) = [0] p(if) = [1] x1 + [1] x2 + [1] p(le) = [1] x1 + [2] p(minus) = [1] x1 + [0] p(perfectp) = [4] x1 + [8] p(s) = [1] x1 + [0] p(true) = [1] p(f#) = [0] p(perfectp#) = [14] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [8] x3 + [0] p(c_5) = [1] p(c_6) = [2] x1 + [0] Following rules are strictly oriented: perfectp#(s(x)) = [14] > [0] = c_6(f#(x,s(0()),s(x),s(x))) Following rules are (at-least) weakly oriented: f#(s(x),0(),z,u) = [0] >= [0] = c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) = [0] >= [0] = c_4(x,y,f#(x,u,z,u)) *** Step 1.b:6.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) - Weak DPs: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () *** Step 1.b:6.b:1: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) - Weak DPs: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) 2: f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) Consider the set of all dependency pairs 1: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) 2: f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) 3: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) BEST_CASE TIME (?,?) SPACE(?,?)on application of the dependency pairs {1,2} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 1.b:6.b:1.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) - Weak DPs: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {3}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [8] p(f) = [1] x1 + [1] x2 + [8] x3 + [1] x4 + [1] p(false) = [4] p(if) = [1] x1 + [1] x2 + [1] x3 + [4] p(le) = [1] x1 + [4] p(minus) = [1] x1 + [1] p(perfectp) = [4] p(s) = [1] x1 + [9] p(true) = [1] p(f#) = [1] x1 + [2] x3 + [0] p(perfectp#) = [3] x1 + [0] p(c_1) = [2] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [1] x3 + [5] p(c_5) = [1] p(c_6) = [1] x1 + [6] Following rules are strictly oriented: f#(s(x),0(),z,u) = [1] x + [2] z + [9] > [1] x + [2] z + [3] = c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) = [1] x + [2] z + [9] > [1] x + [2] z + [5] = c_4(x,y,f#(x,u,z,u)) Following rules are (at-least) weakly oriented: perfectp#(s(x)) = [3] x + [27] >= [3] x + [24] = c_6(f#(x,s(0()),s(x),s(x))) **** Step 1.b:6.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () **** Step 1.b:6.b:1.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)):2 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 2:W:f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) -->_2 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_1 perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))):3 -->_3 f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)):2 -->_2 f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)):2 -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)):2 -->_3 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_2 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 -->_1 f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)):1 3:W:perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) -->_1 f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(s(x),0(),z,u) -> c_3(f#(x,u,minus(z,s(x)),u)) 2: f#(s(x),s(y),z,u) -> c_4(x,y,f#(x,u,z,u)) 3: perfectp#(s(x)) -> c_6(f#(x,s(0()),s(x),s(x))) **** Step 1.b:6.b:1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/4,perfectp/1,f#/4,perfectp#/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/3,c_5/0 ,c_6/1} - Obligation: runtime complexity wrt. defined symbols {f#,perfectp#} and constructors {0,false,if,le,minus,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))