/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 390 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. The pumping substitution is [x1_0 / s(s(x1_0))]. The result substitution is [y / 0, z / minus(z, s(x1_0))]. The rewrite sequence f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,2]. The pumping substitution is [x1_0 / s(s(x1_0))]. The result substitution is [y / 0]. ---------------------------------------- (10) BOUNDS(EXP, INF)