/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (2) CpxRelTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 6 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 49 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y f(cons(f(cons(nil, y)), z)) -> copy(n, y, z) copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) f(cons(c_f(cons(nil, y)), z)) -> copy(n, y, z) The (relative) TRS S consists of the following rules: f(x0) -> c_f(x0) Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: copy(s(x), [], z) The defined contexts are: copy(x0, x1, cons([], x3)) f([]) copy(x0, x1, cons(x2, [])) copy(n, [], x1) copy(n, x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) f(cons(c_f(cons(nil, y)), z)) -> copy(n, y, z) The (relative) TRS S consists of the following rules: f(x0) -> c_f(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> c_f(z0) f(cons(nil, z0)) -> z0 f(cons(c_f(cons(nil, z0)), z1)) -> copy(n, z0, z1) copy(0, z0, z1) -> f(z1) copy(s(z0), z1, z2) -> copy(z0, z1, cons(f(z1), z2)) Tuples: F(z0) -> c F(cons(nil, z0)) -> c1 F(cons(c_f(cons(nil, z0)), z1)) -> c2(COPY(n, z0, z1)) COPY(0, z0, z1) -> c3(F(z1)) COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2)), F(z1)) S tuples: F(cons(nil, z0)) -> c1 F(cons(c_f(cons(nil, z0)), z1)) -> c2(COPY(n, z0, z1)) COPY(0, z0, z1) -> c3(F(z1)) COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2)), F(z1)) K tuples:none Defined Rule Symbols: f_1, copy_3 Defined Pair Symbols: F_1, COPY_3 Compound Symbols: c, c1, c2_1, c3_1, c4_2 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: F(z0) -> c F(cons(c_f(cons(nil, z0)), z1)) -> c2(COPY(n, z0, z1)) COPY(0, z0, z1) -> c3(F(z1)) F(cons(nil, z0)) -> c1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> c_f(z0) f(cons(nil, z0)) -> z0 f(cons(c_f(cons(nil, z0)), z1)) -> copy(n, z0, z1) copy(0, z0, z1) -> f(z1) copy(s(z0), z1, z2) -> copy(z0, z1, cons(f(z1), z2)) Tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2)), F(z1)) S tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2)), F(z1)) K tuples:none Defined Rule Symbols: f_1, copy_3 Defined Pair Symbols: COPY_3 Compound Symbols: c4_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> c_f(z0) f(cons(nil, z0)) -> z0 f(cons(c_f(cons(nil, z0)), z1)) -> copy(n, z0, z1) copy(0, z0, z1) -> f(z1) copy(s(z0), z1, z2) -> copy(z0, z1, cons(f(z1), z2)) Tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) S tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) K tuples:none Defined Rule Symbols: f_1, copy_3 Defined Pair Symbols: COPY_3 Compound Symbols: c4_1 ---------------------------------------- (11) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: copy(0, z0, z1) -> f(z1) copy(s(z0), z1, z2) -> copy(z0, z1, cons(f(z1), z2)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> c_f(z0) f(cons(nil, z0)) -> z0 f(cons(c_f(cons(nil, z0)), z1)) -> copy(n, z0, z1) Tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) S tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) K tuples:none Defined Rule Symbols: f_1 Defined Pair Symbols: COPY_3 Compound Symbols: c4_1 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) We considered the (Usable) Rules:none And the Tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) The order we found is given by the following interpretation: Polynomial interpretation : POL(COPY(x_1, x_2, x_3)) = x_1 POL(c4(x_1)) = x_1 POL(c_f(x_1)) = [1] + x_1 POL(cons(x_1, x_2)) = [1] + x_1 + x_2 POL(copy(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(f(x_1)) = [1] + x_1 POL(n) = 0 POL(nil) = 0 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: f(z0) -> c_f(z0) f(cons(nil, z0)) -> z0 f(cons(c_f(cons(nil, z0)), z1)) -> copy(n, z0, z1) Tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) S tuples:none K tuples: COPY(s(z0), z1, z2) -> c4(COPY(z0, z1, cons(f(z1), z2))) Defined Rule Symbols: f_1 Defined Pair Symbols: COPY_3 Compound Symbols: c4_1 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y f(cons(f(cons(nil, y)), z)) -> copy(n, y, z) copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence copy(s(x), y, z) ->^+ copy(x, y, cons(f(y), z)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x)]. The result substitution is [z / cons(f(y), z)]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y f(cons(f(cons(nil, y)), z)) -> copy(n, y, z) copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(cons(nil, y)) -> y f(cons(f(cons(nil, y)), z)) -> copy(n, y, z) copy(0, y, z) -> f(z) copy(s(x), y, z) -> copy(x, y, cons(f(y), z)) S is empty. Rewrite Strategy: FULL