/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 64 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of h: d The following defined symbols can occur below the 0th argument of d: d Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: H_2, G_2 Compound Symbols: c_1, c1_1 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols: h_2, g_2 Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: h(e(z0), z1) -> h(d(z0, z1), s(z1)) g(e(z0), e(z1)) -> e(g(z0, z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(e(z0), e(z1)) -> c1(G(z0, z1)) We considered the (Usable) Rules:none And the Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(G(x_1, x_2)) = x_2 POL(c1(x_1)) = x_1 POL(e(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) S tuples:none K tuples: G(e(z0), e(z1)) -> c1(G(z0, z1)) Defined Rule Symbols:none Defined Pair Symbols: G_2 Compound Symbols: c1_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(e(x), e(y)) ->^+ e(g(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / e(x), y / e(y)]. The result substitution is [ ]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: h(e(x), y) -> h(d(x, y), s(y)) d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) d(g(g(0, x), y), 0) -> e(y) d(g(0, x), y) -> e(x) d(g(x, y), z) -> g(d(x, z), e(y)) g(e(x), e(y)) -> e(g(x, y)) S is empty. Rewrite Strategy: FULL