/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 47 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 3 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(x, 0) -> 0 min(0, y) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(x, 0) -> x max(0, y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0) -> s(x) gcd(0, s(y)) -> s(y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: min, max, -, gcd They will be analysed ascendingly in the following order: min < gcd max < gcd - < gcd ---------------------------------------- (6) Obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: min, max, -, gcd They will be analysed ascendingly in the following order: min < gcd max < gcd - < gcd ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: min(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0))) ->_IH s(gen_0':s2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: min, max, -, gcd They will be analysed ascendingly in the following order: min < gcd max < gcd - < gcd ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: max, -, gcd They will be analysed ascendingly in the following order: max < gcd - < gcd ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: max(gen_0':s2_0(n300_0), gen_0':s2_0(n300_0)) -> gen_0':s2_0(n300_0), rt in Omega(1 + n300_0) Induction Base: max(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(0) Induction Step: max(gen_0':s2_0(+(n300_0, 1)), gen_0':s2_0(+(n300_0, 1))) ->_R^Omega(1) s(max(gen_0':s2_0(n300_0), gen_0':s2_0(n300_0))) ->_IH s(gen_0':s2_0(c301_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) max(gen_0':s2_0(n300_0), gen_0':s2_0(n300_0)) -> gen_0':s2_0(n300_0), rt in Omega(1 + n300_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: -, gcd They will be analysed ascendingly in the following order: - < gcd ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s2_0(n676_0), gen_0':s2_0(n676_0)) -> gen_0':s2_0(0), rt in Omega(1 + n676_0) Induction Base: -(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(0) Induction Step: -(gen_0':s2_0(+(n676_0, 1)), gen_0':s2_0(+(n676_0, 1))) ->_R^Omega(1) -(gen_0':s2_0(n676_0), gen_0':s2_0(n676_0)) ->_IH gen_0':s2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: min(x, 0') -> 0' min(0', y) -> 0' min(s(x), s(y)) -> s(min(x, y)) max(x, 0') -> x max(0', y) -> y max(s(x), s(y)) -> s(max(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) gcd(s(x), 0') -> s(x) gcd(0', s(y)) -> s(y) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s gcd :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) max(gen_0':s2_0(n300_0), gen_0':s2_0(n300_0)) -> gen_0':s2_0(n300_0), rt in Omega(1 + n300_0) -(gen_0':s2_0(n676_0), gen_0':s2_0(n676_0)) -> gen_0':s2_0(0), rt in Omega(1 + n676_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: gcd