/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 455 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) Types: f :: node -> f node :: s -> cons -> node s :: s -> s addchild :: node -> node -> node select :: cons -> node cons :: node -> cons -> cons hole_f1_0 :: f hole_node2_0 :: node hole_s3_0 :: s hole_cons4_0 :: cons gen_s5_0 :: Nat -> s gen_cons6_0 :: Nat -> cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, select They will be analysed ascendingly in the following order: select < f ---------------------------------------- (6) Obligation: TRS: Rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) Types: f :: node -> f node :: s -> cons -> node s :: s -> s addchild :: node -> node -> node select :: cons -> node cons :: node -> cons -> cons hole_f1_0 :: f hole_node2_0 :: node hole_s3_0 :: s hole_cons4_0 :: cons gen_s5_0 :: Nat -> s gen_cons6_0 :: Nat -> cons Generator Equations: gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) gen_cons6_0(0) <=> hole_cons4_0 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) The following defined symbols remain to be analysed: select, f They will be analysed ascendingly in the following order: select < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: select(gen_cons6_0(+(1, n8_0))) -> *7_0, rt in Omega(n8_0) Induction Base: select(gen_cons6_0(+(1, 0))) Induction Step: select(gen_cons6_0(+(1, +(n8_0, 1)))) ->_R^Omega(1) select(gen_cons6_0(+(1, n8_0))) ->_IH *7_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) Types: f :: node -> f node :: s -> cons -> node s :: s -> s addchild :: node -> node -> node select :: cons -> node cons :: node -> cons -> cons hole_f1_0 :: f hole_node2_0 :: node hole_s3_0 :: s hole_cons4_0 :: cons gen_s5_0 :: Nat -> s gen_cons6_0 :: Nat -> cons Generator Equations: gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) gen_cons6_0(0) <=> hole_cons4_0 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) The following defined symbols remain to be analysed: select, f They will be analysed ascendingly in the following order: select < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) select(cons(ap, xs)) -> ap select(cons(ap, xs)) -> select(xs) addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) Types: f :: node -> f node :: s -> cons -> node s :: s -> s addchild :: node -> node -> node select :: cons -> node cons :: node -> cons -> cons hole_f1_0 :: f hole_node2_0 :: node hole_s3_0 :: s hole_cons4_0 :: cons gen_s5_0 :: Nat -> s gen_cons6_0 :: Nat -> cons Lemmas: select(gen_cons6_0(+(1, n8_0))) -> *7_0, rt in Omega(n8_0) Generator Equations: gen_s5_0(0) <=> hole_s3_0 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) gen_cons6_0(0) <=> hole_cons4_0 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) The following defined symbols remain to be analysed: f