/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 279 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 30 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, x) -> 0 minus(0, x) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' Types: minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 0' :: 0':s:divByZeroError s :: 0':s:divByZeroError -> 0':s:divByZeroError le :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false true :: true:false false :: true:false quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError if_quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false -> true:false -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError hole_true:false2_0 :: true:false gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, le, quot They will be analysed ascendingly in the following order: minus < quot le < quot ---------------------------------------- (6) Obligation: TRS: Rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' Types: minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 0' :: 0':s:divByZeroError s :: 0':s:divByZeroError -> 0':s:divByZeroError le :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false true :: true:false false :: true:false quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError if_quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false -> true:false -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError hole_true:false2_0 :: true:false gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: minus, le, quot They will be analysed ascendingly in the following order: minus < quot le < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n5_0) Induction Base: minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(+(n5_0, 1))) ->_R^Omega(1) minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) ->_IH gen_0':s:divByZeroError3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' Types: minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 0' :: 0':s:divByZeroError s :: 0':s:divByZeroError -> 0':s:divByZeroError le :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false true :: true:false false :: true:false quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError if_quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false -> true:false -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError hole_true:false2_0 :: true:false gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: minus, le, quot They will be analysed ascendingly in the following order: minus < quot le < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' Types: minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 0' :: 0':s:divByZeroError s :: 0':s:divByZeroError -> 0':s:divByZeroError le :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false true :: true:false false :: true:false quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError if_quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false -> true:false -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError hole_true:false2_0 :: true:false gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: le, quot They will be analysed ascendingly in the following order: le < quot ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s:divByZeroError3_0(n381_0), gen_0':s:divByZeroError3_0(n381_0)) -> true, rt in Omega(1 + n381_0) Induction Base: le(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s:divByZeroError3_0(+(n381_0, 1)), gen_0':s:divByZeroError3_0(+(n381_0, 1))) ->_R^Omega(1) le(gen_0':s:divByZeroError3_0(n381_0), gen_0':s:divByZeroError3_0(n381_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(x, x) -> 0' minus(0', x) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) quot(x, y) -> if_quot(minus(x, y), y, le(y, 0'), le(y, x)) if_quot(x, y, true, z) -> divByZeroError if_quot(x, y, false, true) -> s(quot(x, y)) if_quot(x, y, false, false) -> 0' Types: minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 0' :: 0':s:divByZeroError s :: 0':s:divByZeroError -> 0':s:divByZeroError le :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false true :: true:false false :: true:false quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError if_quot :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false -> true:false -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError hole_0':s:divByZeroError1_0 :: 0':s:divByZeroError hole_true:false2_0 :: true:false gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: minus(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n5_0) le(gen_0':s:divByZeroError3_0(n381_0), gen_0':s:divByZeroError3_0(n381_0)) -> true, rt in Omega(1 + n381_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: quot