/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 75 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 437 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 297 ms] (22) proven lower bound (23) LowerBoundPropagationProof [FINISHED, 0 ms] (24) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, times, minus, facIter They will be analysed ascendingly in the following order: plus < times times < facIter minus < facIter ---------------------------------------- (6) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times, minus, facIter They will be analysed ascendingly in the following order: plus < times times < facIter minus < facIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c6_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times, minus, facIter They will be analysed ascendingly in the following order: plus < times times < facIter minus < facIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, minus, facIter They will be analysed ascendingly in the following order: times < facIter minus < facIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n602_0, b)), rt in Omega(1 + b*n602_0 + n602_0) Induction Base: times(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s3_0(+(n602_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) plus(gen_0':s3_0(b), times(gen_0':s3_0(n602_0), gen_0':s3_0(b))) ->_IH plus(gen_0':s3_0(b), gen_0':s3_0(*(c603_0, b))) ->_L^Omega(1 + b) gen_0':s3_0(+(b, *(n602_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, minus, facIter They will be analysed ascendingly in the following order: times < facIter minus < facIter ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n602_0, b)), rt in Omega(1 + b*n602_0 + n602_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, facIter They will be analysed ascendingly in the following order: minus < facIter ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) -> *4_0, rt in Omega(n1362_0) Induction Base: minus(gen_0':s3_0(a), gen_0':s3_0(+(1, 0))) Induction Step: minus(gen_0':s3_0(a), gen_0':s3_0(+(1, +(n1362_0, 1)))) ->_R^Omega(1) p(minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0)))) ->_IH p(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n602_0, b)), rt in Omega(1 + b*n602_0 + n602_0) minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) -> *4_0, rt in Omega(n1362_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: facIter ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: facIter(gen_0':s3_0(n4187_0), gen_0':s3_0(b)) -> *4_0, rt in Omega(n4187_0 + n4187_0^2 + n4187_0^3) Induction Base: facIter(gen_0':s3_0(0), gen_0':s3_0(b)) Induction Step: facIter(gen_0':s3_0(+(n4187_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) if(isZero(gen_0':s3_0(+(n4187_0, 1))), minus(gen_0':s3_0(+(n4187_0, 1)), s(0')), gen_0':s3_0(b), times(gen_0':s3_0(b), gen_0':s3_0(+(n4187_0, 1)))) ->_R^Omega(1) if(false, minus(gen_0':s3_0(+(1, n4187_0)), s(0')), gen_0':s3_0(b), times(gen_0':s3_0(b), gen_0':s3_0(+(1, n4187_0)))) ->_R^Omega(1) if(false, p(minus(gen_0':s3_0(+(1, n4187_0)), 0')), gen_0':s3_0(b), times(gen_0':s3_0(b), gen_0':s3_0(+(1, n4187_0)))) ->_R^Omega(1) if(false, p(gen_0':s3_0(+(1, n4187_0))), gen_0':s3_0(b), times(gen_0':s3_0(b), gen_0':s3_0(+(1, n4187_0)))) ->_R^Omega(1) if(false, gen_0':s3_0(n4187_0), gen_0':s3_0(b), times(gen_0':s3_0(b), gen_0':s3_0(+(1, n4187_0)))) ->_L^Omega(3 + 3*n4187_0 + n4187_0^2) if(false, gen_0':s3_0(n4187_0), gen_0':s3_0(+(1, n4187_0)), gen_0':s3_0(*(b, +(1, n4187_0)))) ->_R^Omega(1) facIter(gen_0':s3_0(n4187_0), gen_0':s3_0(+(b, *(b, n4187_0)))) ->_IH *4_0 We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (22) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(x, y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0') -> 0' minus(x, 0') -> x minus(0', x) -> 0' minus(x, s(y)) -> p(minus(x, y)) isZero(0') -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0')), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s p :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s isZero :: 0':s -> true:false true :: true:false false :: true:false facIter :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n602_0, b)), rt in Omega(1 + b*n602_0 + n602_0) minus(gen_0':s3_0(a), gen_0':s3_0(+(1, n1362_0))) -> *4_0, rt in Omega(n1362_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: facIter ---------------------------------------- (23) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (24) BOUNDS(n^3, INF)