/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 286 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 468 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: tower(x) -> f(a, x, s(0)) f(a, 0, y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, half, exp, double They will be analysed ascendingly in the following order: half < f exp < f double < half double < exp ---------------------------------------- (6) Obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, f, half, exp They will be analysed ascendingly in the following order: half < f exp < f double < half double < exp ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) Induction Base: double(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s3_0(n5_0)))) ->_IH s(s(gen_0':s3_0(*(2, c6_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, f, half, exp They will be analysed ascendingly in the following order: half < f exp < f double < half double < exp ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s Lemmas: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, f, exp They will be analysed ascendingly in the following order: half < f exp < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n253_0))) -> gen_0':s3_0(n253_0), rt in Omega(1 + n253_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) double(0') ->_L^Omega(1) gen_0':s3_0(*(2, 0)) Induction Step: half(gen_0':s3_0(*(2, +(n253_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n253_0)))) ->_IH s(gen_0':s3_0(c254_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s Lemmas: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n253_0))) -> gen_0':s3_0(n253_0), rt in Omega(1 + n253_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: exp, f They will be analysed ascendingly in the following order: exp < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: exp(gen_0':s3_0(+(1, n586_0))) -> *4_0, rt in Omega(n586_0) Induction Base: exp(gen_0':s3_0(+(1, 0))) Induction Step: exp(gen_0':s3_0(+(1, +(n586_0, 1)))) ->_R^Omega(1) double(exp(gen_0':s3_0(+(1, n586_0)))) ->_IH double(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: tower(x) -> f(a, x, s(0')) f(a, 0', y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0') -> s(0') exp(s(x)) -> double(exp(x)) double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> double(0') half(s(0')) -> half(0') half(s(s(x))) -> s(half(x)) Types: tower :: 0':s -> 0':s f :: a:b -> 0':s -> 0':s -> 0':s a :: a:b s :: 0':s -> 0':s 0' :: 0':s b :: a:b half :: 0':s -> 0':s exp :: 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s hole_a:b2_0 :: a:b gen_0':s3_0 :: Nat -> 0':s Lemmas: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n253_0))) -> gen_0':s3_0(n253_0), rt in Omega(1 + n253_0) exp(gen_0':s3_0(+(1, n586_0))) -> *4_0, rt in Omega(n586_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f