/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 396 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 135 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 96 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(0, 0) -> true ge(s(x), 0) -> ge(x, 0) ge(0, s(0)) -> false ge(0, s(s(x))) -> ge(0, s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0, 0) -> 0 minus(0, s(x)) -> minus(0, x) minus(s(x), 0) -> s(minus(x, 0)) minus(s(x), s(y)) -> minus(x, y) plus(0, 0) -> 0 plus(0, s(x)) -> s(plus(0, x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0)), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0 if(true, x, y) -> s(div(minus(x, y), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ge, minus, plus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (6) Obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: ge, minus, plus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(0)) -> true, rt in Omega(1 + n5_0) Induction Base: ge(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) ge(gen_0':s:divByZeroError3_0(n5_0), 0') ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: ge, minus, plus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: minus, plus, div They will be analysed ascendingly in the following order: minus < div ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(n6938_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n6938_0) Induction Base: minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(+(n6938_0, 1))) ->_R^Omega(1) minus(0', gen_0':s:divByZeroError3_0(n6938_0)) ->_IH gen_0':s:divByZeroError3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(n6938_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n6938_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: plus, div ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(n10209_0)) -> gen_0':s:divByZeroError3_0(n10209_0), rt in Omega(1 + n10209_0) Induction Base: plus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) 0' Induction Step: plus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(+(n10209_0, 1))) ->_R^Omega(1) s(plus(0', gen_0':s:divByZeroError3_0(n10209_0))) ->_IH s(gen_0':s:divByZeroError3_0(c10210_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: ge(0', 0') -> true ge(s(x), 0') -> ge(x, 0') ge(0', s(0')) -> false ge(0', s(s(x))) -> ge(0', s(x)) ge(s(x), s(y)) -> ge(x, y) minus(0', 0') -> 0' minus(0', s(x)) -> minus(0', x) minus(s(x), 0') -> s(minus(x, 0')) minus(s(x), s(y)) -> minus(x, y) plus(0', 0') -> 0' plus(0', s(x)) -> s(plus(0', x)) plus(s(x), y) -> s(plus(x, y)) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError plus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(n6938_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n6938_0) plus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(n10209_0)) -> gen_0':s:divByZeroError3_0(n10209_0), rt in Omega(1 + n10209_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: div