/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^4), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^4, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 249 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 23 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 21 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^3, INF) (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 1113 ms] (26) proven lower bound (27) LowerBoundPropagationProof [FINISHED, 0 ms] (28) BOUNDS(n^4, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^4, INF). The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) fac(0, x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^4, INF). The TRS R consists of the following rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, p, times, fac They will be analysed ascendingly in the following order: p < plus plus < times p < times p < fac times < fac ---------------------------------------- (6) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: p, plus, times, fac They will be analysed ascendingly in the following order: p < plus plus < times p < times p < fac times < fac ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: p(gen_0':s2_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s2_0(n4_0)))) ->_IH s(gen_0':s2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: p, plus, times, fac They will be analysed ascendingly in the following order: p < plus plus < times p < times p < fac times < fac ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, fac They will be analysed ascendingly in the following order: plus < times times < fac ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n193_0, b)), rt in Omega(1 + n193_0 + n193_0^2) Induction Base: plus(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) gen_0':s2_0(b) Induction Step: plus(gen_0':s2_0(+(n193_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) s(plus(p(s(gen_0':s2_0(n193_0))), gen_0':s2_0(b))) ->_L^Omega(1 + n193_0) s(plus(gen_0':s2_0(n193_0), gen_0':s2_0(b))) ->_IH s(gen_0':s2_0(+(b, c194_0))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: plus, times, fac They will be analysed ascendingly in the following order: plus < times times < fac ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n193_0, b)), rt in Omega(1 + n193_0 + n193_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, fac They will be analysed ascendingly in the following order: times < fac ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s2_0(n578_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n578_0, b)), rt in Omega(1 + b*n578_0 + b^2*n578_0 + n578_0 + n578_0^2) Induction Base: times(gen_0':s2_0(0), gen_0':s2_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s2_0(+(n578_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) plus(gen_0':s2_0(b), times(p(s(gen_0':s2_0(n578_0))), gen_0':s2_0(b))) ->_L^Omega(1 + n578_0) plus(gen_0':s2_0(b), times(gen_0':s2_0(n578_0), gen_0':s2_0(b))) ->_IH plus(gen_0':s2_0(b), gen_0':s2_0(*(c579_0, b))) ->_L^Omega(1 + b + b^2) gen_0':s2_0(+(b, *(n578_0, b))) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n193_0, b)), rt in Omega(1 + n193_0 + n193_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: times, fac They will be analysed ascendingly in the following order: times < fac ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^3, INF) ---------------------------------------- (24) Obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n193_0, b)), rt in Omega(1 + n193_0 + n193_0^2) times(gen_0':s2_0(n578_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n578_0, b)), rt in Omega(1 + b*n578_0 + b^2*n578_0 + n578_0 + n578_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: fac ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_0':s2_0(n1122_0), gen_0':s2_0(b)) -> *3_0, rt in Omega(b*n1122_0 + b*n1122_0^2 + b^2*n1122_0 + b^2*n1122_0^2 + n1122_0 + n1122_0^2 + n1122_0^3) Induction Base: fac(gen_0':s2_0(0), gen_0':s2_0(b)) Induction Step: fac(gen_0':s2_0(+(n1122_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) fac(p(s(gen_0':s2_0(n1122_0))), times(s(gen_0':s2_0(n1122_0)), gen_0':s2_0(b))) ->_L^Omega(1 + n1122_0) fac(gen_0':s2_0(n1122_0), times(s(gen_0':s2_0(n1122_0)), gen_0':s2_0(b))) ->_L^Omega(3 + b + b*n1122_0 + b^2 + b^2*n1122_0 + 3*n1122_0 + n1122_0^2) fac(gen_0':s2_0(n1122_0), gen_0':s2_0(*(+(n1122_0, 1), b))) ->_IH *3_0 We have rt in Omega(n^4) and sz in O(n). Thus, we have irc_R in Omega(n^4). ---------------------------------------- (26) Obligation: Proved the lower bound n^4 for the following obligation: TRS: Rules: plus(0', x) -> x plus(s(x), y) -> s(plus(p(s(x)), y)) times(0', y) -> 0' times(s(x), y) -> plus(y, times(p(s(x)), y)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) fac(0', x) -> x fac(s(x), y) -> fac(p(s(x)), times(s(x), y)) factorial(x) -> fac(x, s(0')) Types: plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s p :: 0':s -> 0':s times :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s -> 0':s factorial :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: p(gen_0':s2_0(+(1, n4_0))) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) -> gen_0':s2_0(+(n193_0, b)), rt in Omega(1 + n193_0 + n193_0^2) times(gen_0':s2_0(n578_0), gen_0':s2_0(b)) -> gen_0':s2_0(*(n578_0, b)), rt in Omega(1 + b*n578_0 + b^2*n578_0 + n578_0 + n578_0^2) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: fac ---------------------------------------- (27) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (28) BOUNDS(n^4, INF)