/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 255 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 18 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^2, INF) (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) +(0, y) -> y +(s(x), y) -> s(+(x, y)) *(x, 0) -> 0 *(x, s(y)) -> +(x, *(x, y)) f(s(x)) -> f(-(+(*(s(x), s(x)), *(s(x), s(s(s(0))))), *(s(s(x)), s(s(x))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, +', *', f They will be analysed ascendingly in the following order: - < f +' < *' +' < f *' < f ---------------------------------------- (6) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, +', *', f They will be analysed ascendingly in the following order: - < f +' < *' +' < f *' < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, +', *', f They will be analysed ascendingly in the following order: - < f +' < *' +' < f *' < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: +', *', f They will be analysed ascendingly in the following order: +' < *' +' < f *' < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) Induction Base: +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: +'(gen_0':s3_0(+(n225_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(+'(gen_0':s3_0(n225_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c226_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', f They will be analysed ascendingly in the following order: *' < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s3_0(a), gen_0':s3_0(n696_0)) -> gen_0':s3_0(*(n696_0, a)), rt in Omega(1 + a*n696_0 + n696_0) Induction Base: *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: *'(gen_0':s3_0(a), gen_0':s3_0(+(n696_0, 1))) ->_R^Omega(1) +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n696_0))) ->_IH +'(gen_0':s3_0(a), gen_0':s3_0(*(c697_0, a))) ->_L^Omega(1 + a) gen_0':s3_0(+(a, *(n696_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', f They will be analysed ascendingly in the following order: *' < f ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^2, INF) ---------------------------------------- (20) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x))))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) *'(gen_0':s3_0(a), gen_0':s3_0(n696_0)) -> gen_0':s3_0(*(n696_0, a)), rt in Omega(1 + a*n696_0 + n696_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f