/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 249 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 84 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 331 ms] (18) proven lower bound (19) LowerBoundPropagationProof [FINISHED, 0 ms] (20) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: last, dropLast, append, rev They will be analysed ascendingly in the following order: last < rev dropLast < rev append < rev ---------------------------------------- (6) Obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: last, dropLast, append, rev They will be analysed ascendingly in the following order: last < rev dropLast < rev append < rev ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: last(gen_nil:cons3_0(+(1, n5_0))) -> gen_nil:cons3_0(0), rt in Omega(1 + n5_0) Induction Base: last(gen_nil:cons3_0(+(1, 0))) ->_R^Omega(1) nil Induction Step: last(gen_nil:cons3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) last(cons(nil, gen_nil:cons3_0(n5_0))) ->_IH gen_nil:cons3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: last, dropLast, append, rev They will be analysed ascendingly in the following order: last < rev dropLast < rev append < rev ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons3_0(+(1, n5_0))) -> gen_nil:cons3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: dropLast, append, rev They will be analysed ascendingly in the following order: dropLast < rev append < rev ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dropLast(gen_nil:cons3_0(+(1, n198_0))) -> gen_nil:cons3_0(n198_0), rt in Omega(1 + n198_0) Induction Base: dropLast(gen_nil:cons3_0(+(1, 0))) ->_R^Omega(1) nil Induction Step: dropLast(gen_nil:cons3_0(+(1, +(n198_0, 1)))) ->_R^Omega(1) cons(nil, dropLast(cons(nil, gen_nil:cons3_0(n198_0)))) ->_IH cons(nil, gen_nil:cons3_0(c199_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons3_0(+(1, n5_0))) -> gen_nil:cons3_0(0), rt in Omega(1 + n5_0) dropLast(gen_nil:cons3_0(+(1, n198_0))) -> gen_nil:cons3_0(n198_0), rt in Omega(1 + n198_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: append, rev They will be analysed ascendingly in the following order: append < rev ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append(gen_nil:cons3_0(n545_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n545_0, b)), rt in Omega(1 + n545_0) Induction Base: append(gen_nil:cons3_0(0), gen_nil:cons3_0(b)) ->_R^Omega(1) gen_nil:cons3_0(b) Induction Step: append(gen_nil:cons3_0(+(n545_0, 1)), gen_nil:cons3_0(b)) ->_R^Omega(1) cons(nil, append(gen_nil:cons3_0(n545_0), gen_nil:cons3_0(b))) ->_IH cons(nil, gen_nil:cons3_0(+(b, c546_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons3_0(+(1, n5_0))) -> gen_nil:cons3_0(0), rt in Omega(1 + n5_0) dropLast(gen_nil:cons3_0(+(1, n198_0))) -> gen_nil:cons3_0(n198_0), rt in Omega(1 + n198_0) append(gen_nil:cons3_0(n545_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n545_0, b)), rt in Omega(1 + n545_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev(gen_nil:cons3_0(n1160_0), gen_nil:cons3_0(0)) -> gen_nil:cons3_0(0), rt in Omega(1 + n1160_0 + n1160_0^2) Induction Base: rev(gen_nil:cons3_0(0), gen_nil:cons3_0(0)) ->_R^Omega(1) if(isEmpty(gen_nil:cons3_0(0)), dropLast(gen_nil:cons3_0(0)), append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(0))), gen_nil:cons3_0(0)) ->_R^Omega(1) if(true, dropLast(gen_nil:cons3_0(0)), append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(0))), gen_nil:cons3_0(0)) ->_R^Omega(1) if(true, nil, append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(0))), gen_nil:cons3_0(0)) ->_R^Omega(1) if(true, nil, last(gen_nil:cons3_0(0)), gen_nil:cons3_0(0)) ->_R^Omega(1) gen_nil:cons3_0(0) Induction Step: rev(gen_nil:cons3_0(+(n1160_0, 1)), gen_nil:cons3_0(0)) ->_R^Omega(1) if(isEmpty(gen_nil:cons3_0(+(n1160_0, 1))), dropLast(gen_nil:cons3_0(+(n1160_0, 1))), append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(+(n1160_0, 1)))), gen_nil:cons3_0(0)) ->_R^Omega(1) if(false, dropLast(gen_nil:cons3_0(+(1, n1160_0))), append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(+(1, n1160_0)))), gen_nil:cons3_0(0)) ->_L^Omega(1 + n1160_0) if(false, gen_nil:cons3_0(n1160_0), append(gen_nil:cons3_0(0), last(gen_nil:cons3_0(+(1, n1160_0)))), gen_nil:cons3_0(0)) ->_L^Omega(1 + n1160_0) if(false, gen_nil:cons3_0(n1160_0), append(gen_nil:cons3_0(0), gen_nil:cons3_0(0)), gen_nil:cons3_0(0)) ->_L^Omega(1) if(false, gen_nil:cons3_0(n1160_0), gen_nil:cons3_0(+(0, 0)), gen_nil:cons3_0(0)) ->_R^Omega(1) rev(gen_nil:cons3_0(n1160_0), gen_nil:cons3_0(0)) ->_IH gen_nil:cons3_0(0) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: isEmpty(nil) -> true isEmpty(cons(x, xs)) -> false last(cons(x, nil)) -> x last(cons(x, cons(y, ys))) -> last(cons(y, ys)) dropLast(nil) -> nil dropLast(cons(x, nil)) -> nil dropLast(cons(x, cons(y, ys))) -> cons(x, dropLast(cons(y, ys))) append(nil, ys) -> ys append(cons(x, xs), ys) -> cons(x, append(xs, ys)) reverse(xs) -> rev(xs, nil) rev(xs, ys) -> if(isEmpty(xs), dropLast(xs), append(ys, last(xs)), ys) if(true, xs, ys, zs) -> zs if(false, xs, ys, zs) -> rev(xs, ys) Types: isEmpty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: nil:cons -> nil:cons -> nil:cons false :: true:false last :: nil:cons -> nil:cons dropLast :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons reverse :: nil:cons -> nil:cons rev :: nil:cons -> nil:cons -> nil:cons if :: true:false -> nil:cons -> nil:cons -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons gen_nil:cons3_0 :: Nat -> nil:cons Lemmas: last(gen_nil:cons3_0(+(1, n5_0))) -> gen_nil:cons3_0(0), rt in Omega(1 + n5_0) dropLast(gen_nil:cons3_0(+(1, n198_0))) -> gen_nil:cons3_0(n198_0), rt in Omega(1 + n198_0) append(gen_nil:cons3_0(n545_0), gen_nil:cons3_0(b)) -> gen_nil:cons3_0(+(n545_0, b)), rt in Omega(1 + n545_0) Generator Equations: gen_nil:cons3_0(0) <=> nil gen_nil:cons3_0(+(x, 1)) <=> cons(nil, gen_nil:cons3_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (19) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (20) BOUNDS(n^2, INF)