/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 294 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 31 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^2, INF) (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(x, 0) -> 0 min(s(x), s(y)) -> s(min(x, y)) max(0, y) -> y max(x, 0) -> x max(s(x), s(y)) -> s(max(x, y)) +(0, y) -> y +(s(x), y) -> s(+(x, y)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(x, *(x, y)) f(s(x)) -> f(-(max(*(s(x), s(x)), +(s(x), s(s(s(0))))), max(s(*(s(x), s(x))), +(s(x), s(s(s(s(0)))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: min, max, +', -, *', f They will be analysed ascendingly in the following order: max < f +' < *' +' < f - < f *' < f ---------------------------------------- (6) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: min, max, +', -, *', f They will be analysed ascendingly in the following order: max < f +' < *' +' < f - < f *' < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Induction Base: min(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) ->_IH s(gen_0':s3_0(c6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: min, max, +', -, *', f They will be analysed ascendingly in the following order: max < f +' < *' +' < f - < f *' < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: max, +', -, *', f They will be analysed ascendingly in the following order: max < f +' < *' +' < f - < f *' < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) Induction Base: max(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: max(gen_0':s3_0(+(n315_0, 1)), gen_0':s3_0(+(n315_0, 1))) ->_R^Omega(1) s(max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0))) ->_IH s(gen_0':s3_0(c316_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: +', -, *', f They will be analysed ascendingly in the following order: +' < *' +' < f - < f *' < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) Induction Base: +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: +'(gen_0':s3_0(+(n709_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(+'(gen_0':s3_0(n709_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c710_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, *', f They will be analysed ascendingly in the following order: - < f *' < f ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n1306_0, 1)), gen_0':s3_0(+(n1306_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', f They will be analysed ascendingly in the following order: *' < f ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0)) -> gen_0':s3_0(*(n1598_0, a)), rt in Omega(1 + a*n1598_0 + n1598_0) Induction Base: *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: *'(gen_0':s3_0(a), gen_0':s3_0(+(n1598_0, 1))) ->_R^Omega(1) +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0))) ->_IH +'(gen_0':s3_0(a), gen_0':s3_0(*(c1599_0, a))) ->_L^Omega(1 + a) gen_0':s3_0(+(a, *(n1598_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: *', f They will be analysed ascendingly in the following order: *' < f ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^2, INF) ---------------------------------------- (24) Obligation: TRS: Rules: min(0', y) -> 0' min(x, 0') -> 0' min(s(x), s(y)) -> s(min(x, y)) max(0', y) -> y max(x, 0') -> x max(s(x), s(y)) -> s(max(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(x, *'(x, y)) f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) Types: min :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s max :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s - :: 0':s -> 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s f :: 0':s -> f hole_0':s1_0 :: 0':s hole_f2_0 :: f gen_0':s3_0 :: Nat -> 0':s Lemmas: min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0)) -> gen_0':s3_0(*(n1598_0, a)), rt in Omega(1 + a*n1598_0 + n1598_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f