/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 294 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0) -> s(0) logarithm(x) -> logIter(x, 0) logIter(x, y) -> if(le(s(0), x), le(s(s(0)), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: half, le, inc, logIter They will be analysed ascendingly in the following order: half < logIter le < logIter inc < logIter ---------------------------------------- (6) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError Generator Equations: gen_0':s:logZeroError4_0(0) <=> 0' gen_0':s:logZeroError4_0(+(x, 1)) <=> s(gen_0':s:logZeroError4_0(x)) The following defined symbols remain to be analysed: half, le, inc, logIter They will be analysed ascendingly in the following order: half < logIter le < logIter inc < logIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s:logZeroError4_0(*(2, n6_0))) -> gen_0':s:logZeroError4_0(n6_0), rt in Omega(1 + n6_0) Induction Base: half(gen_0':s:logZeroError4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s:logZeroError4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) s(half(gen_0':s:logZeroError4_0(*(2, n6_0)))) ->_IH s(gen_0':s:logZeroError4_0(c7_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError Generator Equations: gen_0':s:logZeroError4_0(0) <=> 0' gen_0':s:logZeroError4_0(+(x, 1)) <=> s(gen_0':s:logZeroError4_0(x)) The following defined symbols remain to be analysed: half, le, inc, logIter They will be analysed ascendingly in the following order: half < logIter le < logIter inc < logIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError Lemmas: half(gen_0':s:logZeroError4_0(*(2, n6_0))) -> gen_0':s:logZeroError4_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_0':s:logZeroError4_0(0) <=> 0' gen_0':s:logZeroError4_0(+(x, 1)) <=> s(gen_0':s:logZeroError4_0(x)) The following defined symbols remain to be analysed: le, inc, logIter They will be analysed ascendingly in the following order: le < logIter inc < logIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) -> true, rt in Omega(1 + n320_0) Induction Base: le(gen_0':s:logZeroError4_0(0), gen_0':s:logZeroError4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s:logZeroError4_0(+(n320_0, 1)), gen_0':s:logZeroError4_0(+(n320_0, 1))) ->_R^Omega(1) le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError Lemmas: half(gen_0':s:logZeroError4_0(*(2, n6_0))) -> gen_0':s:logZeroError4_0(n6_0), rt in Omega(1 + n6_0) le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) -> true, rt in Omega(1 + n320_0) Generator Equations: gen_0':s:logZeroError4_0(0) <=> 0' gen_0':s:logZeroError4_0(+(x, 1)) <=> s(gen_0':s:logZeroError4_0(x)) The following defined symbols remain to be analysed: inc, logIter They will be analysed ascendingly in the following order: inc < logIter ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s:logZeroError4_0(n603_0)) -> gen_0':s:logZeroError4_0(+(1, n603_0)), rt in Omega(1 + n603_0) Induction Base: inc(gen_0':s:logZeroError4_0(0)) ->_R^Omega(1) s(0') Induction Step: inc(gen_0':s:logZeroError4_0(+(n603_0, 1))) ->_R^Omega(1) s(inc(gen_0':s:logZeroError4_0(n603_0))) ->_IH s(gen_0':s:logZeroError4_0(+(1, c604_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) inc(s(x)) -> s(inc(x)) inc(0') -> s(0') logarithm(x) -> logIter(x, 0') logIter(x, y) -> if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y)) if(false, b, x, y) -> logZeroError if(true, false, x, s(y)) -> y if(true, true, x, y) -> logIter(x, y) f -> g f -> h Types: half :: 0':s:logZeroError -> 0':s:logZeroError 0' :: 0':s:logZeroError s :: 0':s:logZeroError -> 0':s:logZeroError le :: 0':s:logZeroError -> 0':s:logZeroError -> true:false true :: true:false false :: true:false inc :: 0':s:logZeroError -> 0':s:logZeroError logarithm :: 0':s:logZeroError -> 0':s:logZeroError logIter :: 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError if :: true:false -> true:false -> 0':s:logZeroError -> 0':s:logZeroError -> 0':s:logZeroError logZeroError :: 0':s:logZeroError f :: g:h g :: g:h h :: g:h hole_0':s:logZeroError1_0 :: 0':s:logZeroError hole_true:false2_0 :: true:false hole_g:h3_0 :: g:h gen_0':s:logZeroError4_0 :: Nat -> 0':s:logZeroError Lemmas: half(gen_0':s:logZeroError4_0(*(2, n6_0))) -> gen_0':s:logZeroError4_0(n6_0), rt in Omega(1 + n6_0) le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) -> true, rt in Omega(1 + n320_0) inc(gen_0':s:logZeroError4_0(n603_0)) -> gen_0':s:logZeroError4_0(+(1, n603_0)), rt in Omega(1 + n603_0) Generator Equations: gen_0':s:logZeroError4_0(0) <=> 0' gen_0':s:logZeroError4_0(+(x, 1)) <=> s(gen_0':s:logZeroError4_0(x)) The following defined symbols remain to be analysed: logIter