/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 247 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 65 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: division(x, y) -> div(x, y, 0) div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0) -> s(0) inc(s(x)) -> s(inc(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: div, lt, inc, minus They will be analysed ascendingly in the following order: lt < div inc < div minus < div ---------------------------------------- (6) Obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, div, inc, minus They will be analysed ascendingly in the following order: lt < div inc < div minus < div ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, div, inc, minus They will be analysed ascendingly in the following order: lt < div inc < div minus < div ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: inc, div, minus They will be analysed ascendingly in the following order: inc < div minus < div ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s3_0(n257_0)) -> gen_0':s3_0(+(1, n257_0)), rt in Omega(1 + n257_0) Induction Base: inc(gen_0':s3_0(0)) ->_R^Omega(1) s(0') Induction Step: inc(gen_0':s3_0(+(n257_0, 1))) ->_R^Omega(1) s(inc(gen_0':s3_0(n257_0))) ->_IH s(gen_0':s3_0(+(1, c258_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) inc(gen_0':s3_0(n257_0)) -> gen_0':s3_0(+(1, n257_0)), rt in Omega(1 + n257_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, div They will be analysed ascendingly in the following order: minus < div ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s3_0(n467_0), gen_0':s3_0(n467_0)) -> gen_0':s3_0(0), rt in Omega(1 + n467_0) Induction Base: minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: minus(gen_0':s3_0(+(n467_0, 1)), gen_0':s3_0(+(n467_0, 1))) ->_R^Omega(1) minus(gen_0':s3_0(n467_0), gen_0':s3_0(n467_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: division(x, y) -> div(x, y, 0') div(x, y, z) -> if(lt(x, y), x, y, inc(z)) if(true, x, y, z) -> z if(false, x, s(y), z) -> div(minus(x, s(y)), s(y), z) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) inc(0') -> s(0') inc(s(x)) -> s(inc(x)) Types: division :: 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s true :: true:false false :: true:false s :: 0':s -> 0':s minus :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) inc(gen_0':s3_0(n257_0)) -> gen_0':s3_0(+(1, n257_0)), rt in Omega(1 + n257_0) minus(gen_0':s3_0(n467_0), gen_0':s3_0(n467_0)) -> gen_0':s3_0(0), rt in Omega(1 + n467_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: div