/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 251 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 193 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0) -> s(0) inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') Types: isEmpty :: empty:node -> true:false empty :: empty:node true :: true:false node :: empty:node -> empty:node -> empty:node false :: true:false left :: empty:node -> empty:node right :: empty:node -> empty:node inc :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s count :: empty:node -> 0':s -> 0':s if :: true:false -> true:false -> empty:node -> empty:node -> 0':s -> 0':s -> 0':s nrOfNodes :: empty:node -> 0':s hole_true:false1_0 :: true:false hole_empty:node2_0 :: empty:node hole_0':s3_0 :: 0':s gen_empty:node4_0 :: Nat -> empty:node gen_0':s5_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: inc, count They will be analysed ascendingly in the following order: inc < count ---------------------------------------- (6) Obligation: TRS: Rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') Types: isEmpty :: empty:node -> true:false empty :: empty:node true :: true:false node :: empty:node -> empty:node -> empty:node false :: true:false left :: empty:node -> empty:node right :: empty:node -> empty:node inc :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s count :: empty:node -> 0':s -> 0':s if :: true:false -> true:false -> empty:node -> empty:node -> 0':s -> 0':s -> 0':s nrOfNodes :: empty:node -> 0':s hole_true:false1_0 :: true:false hole_empty:node2_0 :: empty:node hole_0':s3_0 :: 0':s gen_empty:node4_0 :: Nat -> empty:node gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_empty:node4_0(0) <=> empty gen_empty:node4_0(+(x, 1)) <=> node(empty, gen_empty:node4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: inc, count They will be analysed ascendingly in the following order: inc < count ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s5_0(n7_0)) -> gen_0':s5_0(+(1, n7_0)), rt in Omega(1 + n7_0) Induction Base: inc(gen_0':s5_0(0)) ->_R^Omega(1) s(0') Induction Step: inc(gen_0':s5_0(+(n7_0, 1))) ->_R^Omega(1) s(inc(gen_0':s5_0(n7_0))) ->_IH s(gen_0':s5_0(+(1, c8_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') Types: isEmpty :: empty:node -> true:false empty :: empty:node true :: true:false node :: empty:node -> empty:node -> empty:node false :: true:false left :: empty:node -> empty:node right :: empty:node -> empty:node inc :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s count :: empty:node -> 0':s -> 0':s if :: true:false -> true:false -> empty:node -> empty:node -> 0':s -> 0':s -> 0':s nrOfNodes :: empty:node -> 0':s hole_true:false1_0 :: true:false hole_empty:node2_0 :: empty:node hole_0':s3_0 :: 0':s gen_empty:node4_0 :: Nat -> empty:node gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_empty:node4_0(0) <=> empty gen_empty:node4_0(+(x, 1)) <=> node(empty, gen_empty:node4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: inc, count They will be analysed ascendingly in the following order: inc < count ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') Types: isEmpty :: empty:node -> true:false empty :: empty:node true :: true:false node :: empty:node -> empty:node -> empty:node false :: true:false left :: empty:node -> empty:node right :: empty:node -> empty:node inc :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s count :: empty:node -> 0':s -> 0':s if :: true:false -> true:false -> empty:node -> empty:node -> 0':s -> 0':s -> 0':s nrOfNodes :: empty:node -> 0':s hole_true:false1_0 :: true:false hole_empty:node2_0 :: empty:node hole_0':s3_0 :: 0':s gen_empty:node4_0 :: Nat -> empty:node gen_0':s5_0 :: Nat -> 0':s Lemmas: inc(gen_0':s5_0(n7_0)) -> gen_0':s5_0(+(1, n7_0)), rt in Omega(1 + n7_0) Generator Equations: gen_empty:node4_0(0) <=> empty gen_empty:node4_0(+(x, 1)) <=> node(empty, gen_empty:node4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: count ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: count(gen_empty:node4_0(n263_0), gen_0':s5_0(b)) -> gen_0':s5_0(+(n263_0, b)), rt in Omega(1 + b + b*n263_0 + n263_0) Induction Base: count(gen_empty:node4_0(0), gen_0':s5_0(b)) ->_R^Omega(1) if(isEmpty(gen_empty:node4_0(0)), isEmpty(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)), node(left(left(gen_empty:node4_0(0))), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, isEmpty(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)), node(left(left(gen_empty:node4_0(0))), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, isEmpty(empty), right(gen_empty:node4_0(0)), node(left(left(gen_empty:node4_0(0))), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, right(gen_empty:node4_0(0)), node(left(left(gen_empty:node4_0(0))), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(left(left(gen_empty:node4_0(0))), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(left(empty), node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(empty, node(right(left(gen_empty:node4_0(0))), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(empty, node(right(empty), right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(empty, node(empty, right(gen_empty:node4_0(0)))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, true, empty, node(empty, node(empty, empty)), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_L^Omega(1 + b) if(true, true, empty, node(empty, node(empty, empty)), gen_0':s5_0(b), gen_0':s5_0(+(1, b))) ->_R^Omega(1) gen_0':s5_0(b) Induction Step: count(gen_empty:node4_0(+(n263_0, 1)), gen_0':s5_0(b)) ->_R^Omega(1) if(isEmpty(gen_empty:node4_0(+(n263_0, 1))), isEmpty(left(gen_empty:node4_0(+(n263_0, 1)))), right(gen_empty:node4_0(+(n263_0, 1))), node(left(left(gen_empty:node4_0(+(n263_0, 1)))), node(right(left(gen_empty:node4_0(+(n263_0, 1)))), right(gen_empty:node4_0(+(n263_0, 1))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, isEmpty(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))), node(left(left(gen_empty:node4_0(+(1, n263_0)))), node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, isEmpty(empty), right(gen_empty:node4_0(+(1, n263_0))), node(left(left(gen_empty:node4_0(+(1, n263_0)))), node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, right(gen_empty:node4_0(+(1, n263_0))), node(left(left(gen_empty:node4_0(+(1, n263_0)))), node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(left(left(gen_empty:node4_0(+(1, n263_0)))), node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(left(empty), node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(empty, node(right(left(gen_empty:node4_0(+(1, n263_0)))), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(empty, node(right(empty), right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(empty, node(empty, right(gen_empty:node4_0(+(1, n263_0))))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_empty:node4_0(n263_0), node(empty, node(empty, gen_empty:node4_0(n263_0))), gen_0':s5_0(b), inc(gen_0':s5_0(b))) ->_L^Omega(1 + b) if(false, true, gen_empty:node4_0(n263_0), node(empty, node(empty, gen_empty:node4_0(n263_0))), gen_0':s5_0(b), gen_0':s5_0(+(1, b))) ->_R^Omega(1) count(gen_empty:node4_0(n263_0), gen_0':s5_0(+(1, b))) ->_IH gen_0':s5_0(+(+(1, b), c264_0)) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: isEmpty(empty) -> true isEmpty(node(l, r)) -> false left(empty) -> empty left(node(l, r)) -> l right(empty) -> empty right(node(l, r)) -> r inc(0') -> s(0') inc(s(x)) -> s(inc(x)) count(n, x) -> if(isEmpty(n), isEmpty(left(n)), right(n), node(left(left(n)), node(right(left(n)), right(n))), x, inc(x)) if(true, b, n, m, x, y) -> x if(false, false, n, m, x, y) -> count(m, x) if(false, true, n, m, x, y) -> count(n, y) nrOfNodes(n) -> count(n, 0') Types: isEmpty :: empty:node -> true:false empty :: empty:node true :: true:false node :: empty:node -> empty:node -> empty:node false :: true:false left :: empty:node -> empty:node right :: empty:node -> empty:node inc :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s count :: empty:node -> 0':s -> 0':s if :: true:false -> true:false -> empty:node -> empty:node -> 0':s -> 0':s -> 0':s nrOfNodes :: empty:node -> 0':s hole_true:false1_0 :: true:false hole_empty:node2_0 :: empty:node hole_0':s3_0 :: 0':s gen_empty:node4_0 :: Nat -> empty:node gen_0':s5_0 :: Nat -> 0':s Lemmas: inc(gen_0':s5_0(n7_0)) -> gen_0':s5_0(+(1, n7_0)), rt in Omega(1 + n7_0) Generator Equations: gen_empty:node4_0(0) <=> empty gen_empty:node4_0(+(x, 1)) <=> node(empty, gen_empty:node4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: count ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^2, INF)