/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 290 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 76 ms] (16) proven lower bound (17) LowerBoundPropagationProof [FINISHED, 0 ms] (18) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0) -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0)) -> 0 p(0) -> 0 inc(s(x)) -> s(inc(x)) inc(0) -> s(0) sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: p, inc, sumList They will be analysed ascendingly in the following order: p < sumList inc < sumList ---------------------------------------- (6) Obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(0', gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: p, inc, sumList They will be analysed ascendingly in the following order: p < sumList inc < sumList ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) Induction Base: p(gen_0':s5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_0':s5_0(+(1, +(n7_0, 1)))) ->_R^Omega(1) s(p(s(gen_0':s5_0(n7_0)))) ->_IH s(gen_0':s5_0(c8_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(0', gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: p, inc, sumList They will be analysed ascendingly in the following order: p < sumList inc < sumList ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(0', gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: inc, sumList They will be analysed ascendingly in the following order: inc < sumList ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s5_0(n264_0)) -> gen_0':s5_0(+(1, n264_0)), rt in Omega(1 + n264_0) Induction Base: inc(gen_0':s5_0(0)) ->_R^Omega(1) s(0') Induction Step: inc(gen_0':s5_0(+(n264_0, 1))) ->_R^Omega(1) s(inc(gen_0':s5_0(n264_0))) ->_IH s(gen_0':s5_0(+(1, c265_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) inc(gen_0':s5_0(n264_0)) -> gen_0':s5_0(+(1, n264_0)), rt in Omega(1 + n264_0) Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(0', gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: sumList ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) -> gen_0':s5_0(b), rt in Omega(1 + b + b*n531_0 + n531_0) Induction Base: sumList(gen_cons:nil4_0(0), gen_0':s5_0(b)) ->_R^Omega(1) if(isEmpty(gen_cons:nil4_0(0)), isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), tail(gen_cons:nil4_0(0)), cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), tail(gen_cons:nil4_0(0)), cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), tail(gen_cons:nil4_0(0))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), nil), inc(gen_0':s5_0(b))) ->_L^Omega(1 + b) if(true, isZero(head(gen_cons:nil4_0(0))), gen_0':s5_0(b), nil, cons(p(head(gen_cons:nil4_0(0))), nil), gen_0':s5_0(+(1, b))) ->_R^Omega(1) gen_0':s5_0(b) Induction Step: sumList(gen_cons:nil4_0(+(n531_0, 1)), gen_0':s5_0(b)) ->_R^Omega(1) if(isEmpty(gen_cons:nil4_0(+(n531_0, 1))), isZero(head(gen_cons:nil4_0(+(n531_0, 1)))), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(n531_0, 1))), cons(p(head(gen_cons:nil4_0(+(n531_0, 1)))), tail(gen_cons:nil4_0(+(n531_0, 1)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, isZero(head(gen_cons:nil4_0(+(1, n531_0)))), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, isZero(0'), gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_0':s5_0(b), tail(gen_cons:nil4_0(+(1, n531_0))), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(p(head(gen_cons:nil4_0(+(1, n531_0)))), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(p(0'), tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', tail(gen_cons:nil4_0(+(1, n531_0)))), inc(gen_0':s5_0(b))) ->_R^Omega(1) if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', gen_cons:nil4_0(n531_0)), inc(gen_0':s5_0(b))) ->_L^Omega(1 + b) if(false, true, gen_0':s5_0(b), gen_cons:nil4_0(n531_0), cons(0', gen_cons:nil4_0(n531_0)), gen_0':s5_0(+(1, b))) ->_R^Omega(1) sumList(gen_cons:nil4_0(n531_0), gen_0':s5_0(b)) ->_IH gen_0':s5_0(b) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: isEmpty(cons(x, xs)) -> false isEmpty(nil) -> true isZero(0') -> true isZero(s(x)) -> false head(cons(x, xs)) -> x tail(cons(x, xs)) -> xs tail(nil) -> nil p(s(s(x))) -> s(p(s(x))) p(s(0')) -> 0' p(0') -> 0' inc(s(x)) -> s(inc(x)) inc(0') -> s(0') sumList(xs, y) -> if(isEmpty(xs), isZero(head(xs)), y, tail(xs), cons(p(head(xs)), tail(xs)), inc(y)) if(true, b, y, xs, ys, x) -> y if(false, true, y, xs, ys, x) -> sumList(xs, y) if(false, false, y, xs, ys, x) -> sumList(ys, x) sum(xs) -> sumList(xs, 0') Types: isEmpty :: cons:nil -> false:true cons :: 0':s -> cons:nil -> cons:nil false :: false:true nil :: cons:nil true :: false:true isZero :: 0':s -> false:true 0' :: 0':s s :: 0':s -> 0':s head :: cons:nil -> 0':s tail :: cons:nil -> cons:nil p :: 0':s -> 0':s inc :: 0':s -> 0':s sumList :: cons:nil -> 0':s -> 0':s if :: false:true -> false:true -> 0':s -> cons:nil -> cons:nil -> 0':s -> 0':s sum :: cons:nil -> 0':s hole_false:true1_0 :: false:true hole_cons:nil2_0 :: cons:nil hole_0':s3_0 :: 0':s gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Lemmas: p(gen_0':s5_0(+(1, n7_0))) -> gen_0':s5_0(n7_0), rt in Omega(1 + n7_0) inc(gen_0':s5_0(n264_0)) -> gen_0':s5_0(+(1, n264_0)), rt in Omega(1 + n264_0) Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(0', gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: sumList ---------------------------------------- (17) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (18) BOUNDS(n^2, INF)