/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 267 ms] (8) proven lower bound (9) LowerBoundPropagationProof [FINISHED, 0 ms] (10) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> l append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> l append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> l append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) Types: is_empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: hd -> nil:cons -> nil:cons false :: true:false hd :: nil:cons -> hd tl :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons ifappend :: nil:cons -> nil:cons -> true:false -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_hd3_0 :: hd gen_nil:cons4_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: append ---------------------------------------- (6) Obligation: TRS: Rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> l append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) Types: is_empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: hd -> nil:cons -> nil:cons false :: true:false hd :: nil:cons -> hd tl :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons ifappend :: nil:cons -> nil:cons -> true:false -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_hd3_0 :: hd gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(hole_hd3_0, gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: append ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append(gen_nil:cons4_0(n6_0), gen_nil:cons4_0(b)) -> gen_nil:cons4_0(+(n6_0, b)), rt in Omega(1 + n6_0) Induction Base: append(gen_nil:cons4_0(0), gen_nil:cons4_0(b)) ->_R^Omega(1) ifappend(gen_nil:cons4_0(0), gen_nil:cons4_0(b), is_empty(gen_nil:cons4_0(0))) ->_R^Omega(1) ifappend(gen_nil:cons4_0(0), gen_nil:cons4_0(b), true) ->_R^Omega(1) gen_nil:cons4_0(b) Induction Step: append(gen_nil:cons4_0(+(n6_0, 1)), gen_nil:cons4_0(b)) ->_R^Omega(1) ifappend(gen_nil:cons4_0(+(n6_0, 1)), gen_nil:cons4_0(b), is_empty(gen_nil:cons4_0(+(n6_0, 1)))) ->_R^Omega(1) ifappend(gen_nil:cons4_0(+(1, n6_0)), gen_nil:cons4_0(b), false) ->_R^Omega(1) cons(hd(gen_nil:cons4_0(+(1, n6_0))), append(tl(gen_nil:cons4_0(+(1, n6_0))), gen_nil:cons4_0(b))) ->_R^Omega(1) cons(hole_hd3_0, append(tl(gen_nil:cons4_0(+(1, n6_0))), gen_nil:cons4_0(b))) ->_R^Omega(1) cons(hole_hd3_0, append(gen_nil:cons4_0(n6_0), gen_nil:cons4_0(b))) ->_IH cons(hole_hd3_0, gen_nil:cons4_0(+(b, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> l append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) Types: is_empty :: nil:cons -> true:false nil :: nil:cons true :: true:false cons :: hd -> nil:cons -> nil:cons false :: true:false hd :: nil:cons -> hd tl :: nil:cons -> nil:cons append :: nil:cons -> nil:cons -> nil:cons ifappend :: nil:cons -> nil:cons -> true:false -> nil:cons hole_true:false1_0 :: true:false hole_nil:cons2_0 :: nil:cons hole_hd3_0 :: hd gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(hole_hd3_0, gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: append ---------------------------------------- (9) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (10) BOUNDS(n^1, INF)