/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence foldf(x, cons(y, z)) ->^+ f(foldf(x, z), y) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z / cons(y, z)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: FULL