/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 715 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0', n) -> ack_out(s(n)) ack_in(s(m), 0') -> u11(ack_in(m, s(0'))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: ack_in(0', n) -> ack_out(s(n)) ack_in(s(m), 0') -> u11(ack_in(m, s(0'))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) Types: ack_in :: 0':s -> 0':s -> ack_out 0' :: 0':s ack_out :: 0':s -> ack_out s :: 0':s -> 0':s u11 :: ack_out -> ack_out u21 :: ack_out -> 0':s -> ack_out u22 :: ack_out -> ack_out hole_ack_out1_0 :: ack_out hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ack_in, u21 They will be analysed ascendingly in the following order: ack_in = u21 ---------------------------------------- (6) Obligation: TRS: Rules: ack_in(0', n) -> ack_out(s(n)) ack_in(s(m), 0') -> u11(ack_in(m, s(0'))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) Types: ack_in :: 0':s -> 0':s -> ack_out 0' :: 0':s ack_out :: 0':s -> ack_out s :: 0':s -> 0':s u11 :: ack_out -> ack_out u21 :: ack_out -> 0':s -> ack_out u22 :: ack_out -> ack_out hole_ack_out1_0 :: ack_out hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: u21, ack_in They will be analysed ascendingly in the following order: ack_in = u21 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack_in(gen_0':s3_0(1), gen_0':s3_0(+(1, n4108_0))) -> *4_0, rt in Omega(n4108_0) Induction Base: ack_in(gen_0':s3_0(1), gen_0':s3_0(+(1, 0))) Induction Step: ack_in(gen_0':s3_0(1), gen_0':s3_0(+(1, +(n4108_0, 1)))) ->_R^Omega(1) u21(ack_in(s(gen_0':s3_0(0)), gen_0':s3_0(+(1, n4108_0))), gen_0':s3_0(0)) ->_IH u21(*4_0, gen_0':s3_0(0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: ack_in(0', n) -> ack_out(s(n)) ack_in(s(m), 0') -> u11(ack_in(m, s(0'))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) Types: ack_in :: 0':s -> 0':s -> ack_out 0' :: 0':s ack_out :: 0':s -> ack_out s :: 0':s -> 0':s u11 :: ack_out -> ack_out u21 :: ack_out -> 0':s -> ack_out u22 :: ack_out -> ack_out hole_ack_out1_0 :: ack_out hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: ack_in They will be analysed ascendingly in the following order: ack_in = u21 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: ack_in(0', n) -> ack_out(s(n)) ack_in(s(m), 0') -> u11(ack_in(m, s(0'))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) Types: ack_in :: 0':s -> 0':s -> ack_out 0' :: 0':s ack_out :: 0':s -> ack_out s :: 0':s -> 0':s u11 :: ack_out -> ack_out u21 :: ack_out -> 0':s -> ack_out u22 :: ack_out -> ack_out hole_ack_out1_0 :: ack_out hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: ack_in(gen_0':s3_0(1), gen_0':s3_0(+(1, n4108_0))) -> *4_0, rt in Omega(n4108_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: u21 They will be analysed ascendingly in the following order: ack_in = u21