/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 5 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 417 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 160 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 148 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0', c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0'), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: triple/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldB :: triple -> 0':s -> triple 0' :: 0':s s :: 0':s -> 0':s f :: triple -> A:B:C -> triple foldC :: triple -> 0':s -> triple f' :: triple -> A:B:C -> triple triple :: 0':s -> 0':s -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: foldB, f, foldC, f', f'' They will be analysed ascendingly in the following order: foldB = f foldB = foldC foldB = f' foldB = f'' f = foldC f = f' f = f'' foldC = f' foldC = f'' f' = f'' ---------------------------------------- (8) Obligation: TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldB :: triple -> 0':s -> triple 0' :: 0':s s :: 0':s -> 0':s f :: triple -> A:B:C -> triple foldC :: triple -> 0':s -> triple f' :: triple -> A:B:C -> triple triple :: 0':s -> 0':s -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: f, foldB, foldC, f', f'' They will be analysed ascendingly in the following order: foldB = f foldB = foldC foldB = f' foldB = f'' f = foldC f = f' f = f'' foldC = f' foldC = f'' f' = f'' ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: foldC(triple(0', 0'), gen_0':s4_0(n143_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n143_0) Induction Base: foldC(triple(0', 0'), gen_0':s4_0(0)) ->_R^Omega(1) triple(0', 0') Induction Step: foldC(triple(0', 0'), gen_0':s4_0(+(n143_0, 1))) ->_R^Omega(1) f(foldC(triple(0', 0'), gen_0':s4_0(n143_0)), C) ->_IH f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) ->_R^Omega(1) f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) ->_R^Omega(1) f''(triple(0', gen_0':s4_0(0))) ->_R^Omega(1) foldC(triple(0', 0'), gen_0':s4_0(0)) ->_R^Omega(1) triple(0', 0') We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldB :: triple -> 0':s -> triple 0' :: 0':s s :: 0':s -> 0':s f :: triple -> A:B:C -> triple foldC :: triple -> 0':s -> triple f' :: triple -> A:B:C -> triple triple :: 0':s -> 0':s -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: foldC, foldB They will be analysed ascendingly in the following order: foldB = f foldB = foldC foldB = f' foldB = f'' f = foldC f = f' f = f'' foldC = f' foldC = f'' f' = f'' ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldB :: triple -> 0':s -> triple 0' :: 0':s s :: 0':s -> 0':s f :: triple -> A:B:C -> triple foldC :: triple -> 0':s -> triple f' :: triple -> A:B:C -> triple triple :: 0':s -> 0':s -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: foldC(triple(0', 0'), gen_0':s4_0(n143_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n143_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: foldB, f, f', f'' They will be analysed ascendingly in the following order: foldB = f foldB = foldC foldB = f' foldB = f'' f = foldC f = f' f = f'' foldC = f' foldC = f'' f' = f'' ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n2037_0) Induction Base: foldB(triple(0', 0'), gen_0':s4_0(0)) ->_R^Omega(1) triple(0', 0') Induction Step: foldB(triple(0', 0'), gen_0':s4_0(+(n2037_0, 1))) ->_R^Omega(1) f(foldB(triple(0', 0'), gen_0':s4_0(n2037_0)), B) ->_IH f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), B) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(B)) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) ->_R^Omega(1) f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) ->_R^Omega(1) f''(triple(0', gen_0':s4_0(0))) ->_R^Omega(1) foldC(triple(0', 0'), gen_0':s4_0(0)) ->_L^Omega(1) triple(gen_0':s4_0(0), gen_0':s4_0(0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0') -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0') -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, s(c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldB(triple(0', c), b)) f''(triple(b, c)) -> foldC(triple(b, 0'), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldB :: triple -> 0':s -> triple 0' :: 0':s s :: 0':s -> 0':s f :: triple -> A:B:C -> triple foldC :: triple -> 0':s -> triple f' :: triple -> A:B:C -> triple triple :: 0':s -> 0':s -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: foldC(triple(0', 0'), gen_0':s4_0(n143_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n143_0) foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n2037_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: f, foldC, f', f'' They will be analysed ascendingly in the following order: foldB = f foldB = foldC foldB = f' foldB = f'' f = foldC f = f' f = f'' foldC = f' foldC = f'' f' = f'' ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: foldC(triple(0', 0'), gen_0':s4_0(n4048_0)) -> triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt in Omega(1 + n4048_0) Induction Base: foldC(triple(0', 0'), gen_0':s4_0(0)) ->_R^Omega(1) triple(0', 0') Induction Step: foldC(triple(0', 0'), gen_0':s4_0(+(n4048_0, 1))) ->_R^Omega(1) f(foldC(triple(0', 0'), gen_0':s4_0(n4048_0)), C) ->_IH f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) ->_R^Omega(1) f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) ->_R^Omega(1) f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) ->_L^Omega(1) f''(triple(gen_0':s4_0(0), gen_0':s4_0(0))) ->_R^Omega(1) foldC(triple(gen_0':s4_0(0), 0'), gen_0':s4_0(0)) ->_R^Omega(1) triple(gen_0':s4_0(0), 0') We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) BOUNDS(1, INF)