/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 353 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 4183 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 4 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 401 ms] (24) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: +(x, 0) -> x +(0, x) -> x +(s(x), s(y)) -> s(s(+(x, y))) +(+(x, y), z) -> +(x, +(y, z)) *(x, 0) -> 0 *(0, x) -> 0 *(s(x), s(y)) -> s(+(*(x, y), +(x, y))) *(*(x, y), z) -> *(x, *(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0 sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> s(0) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', *', app, sum, prod They will be analysed ascendingly in the following order: +' < *' +' < sum *' < prod ---------------------------------------- (6) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: +', *', app, sum, prod They will be analysed ascendingly in the following order: +' < *' +' < sum *' < prod ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) Induction Base: +'(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: +'(gen_0':s3_0(+(n6_0, 1)), gen_0':s3_0(+(n6_0, 1))) ->_R^Omega(1) s(s(+'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)))) ->_IH s(s(gen_0':s3_0(*(2, c7_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: +', *', app, sum, prod They will be analysed ascendingly in the following order: +' < *' +' < sum *' < prod ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: *', app, sum, prod They will be analysed ascendingly in the following order: *' < prod ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)) -> *5_0, rt in Omega(n719_0 + n719_0^2) Induction Base: *'(gen_0':s3_0(0), gen_0':s3_0(0)) Induction Step: *'(gen_0':s3_0(+(n719_0, 1)), gen_0':s3_0(+(n719_0, 1))) ->_R^Omega(1) s(+'(*'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)), +'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)))) ->_IH s(+'(*5_0, +'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)))) ->_L^Omega(1 + n719_0) s(+'(*5_0, gen_0':s3_0(*(2, n719_0)))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: *', app, sum, prod They will be analysed ascendingly in the following order: *' < prod ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) *'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)) -> *5_0, rt in Omega(n719_0 + n719_0^2) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: app, sum, prod ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:cons4_0(n13211_0), gen_nil:cons4_0(b)) -> gen_nil:cons4_0(+(n13211_0, b)), rt in Omega(1 + n13211_0) Induction Base: app(gen_nil:cons4_0(0), gen_nil:cons4_0(b)) ->_R^Omega(1) gen_nil:cons4_0(b) Induction Step: app(gen_nil:cons4_0(+(n13211_0, 1)), gen_nil:cons4_0(b)) ->_R^Omega(1) cons(0', app(gen_nil:cons4_0(n13211_0), gen_nil:cons4_0(b))) ->_IH cons(0', gen_nil:cons4_0(+(b, c13212_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) *'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)) -> *5_0, rt in Omega(n719_0 + n719_0^2) app(gen_nil:cons4_0(n13211_0), gen_nil:cons4_0(b)) -> gen_nil:cons4_0(+(n13211_0, b)), rt in Omega(1 + n13211_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: sum, prod ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_nil:cons4_0(n14223_0)) -> gen_0':s3_0(0), rt in Omega(1 + n14223_0) Induction Base: sum(gen_nil:cons4_0(0)) ->_R^Omega(1) 0' Induction Step: sum(gen_nil:cons4_0(+(n14223_0, 1))) ->_R^Omega(1) +'(0', sum(gen_nil:cons4_0(n14223_0))) ->_IH +'(0', gen_0':s3_0(0)) ->_L^Omega(1) gen_0':s3_0(*(2, 0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: +'(x, 0') -> x +'(0', x) -> x +'(s(x), s(y)) -> s(s(+'(x, y))) +'(+'(x, y), z) -> +'(x, +'(y, z)) *'(x, 0') -> 0' *'(0', x) -> 0' *'(s(x), s(y)) -> s(+'(*'(x, y), +'(x, y))) *'(*'(x, y), z) -> *'(x, *'(y, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0' sum(cons(x, l)) -> +'(x, sum(l)) sum(app(l1, l2)) -> +'(sum(l1), sum(l2)) prod(nil) -> s(0') prod(cons(x, l)) -> *'(x, prod(l)) prod(app(l1, l2)) -> *'(prod(l1), prod(l2)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons sum :: nil:cons -> 0':s prod :: nil:cons -> 0':s hole_0':s1_0 :: 0':s hole_nil:cons2_0 :: nil:cons gen_0':s3_0 :: Nat -> 0':s gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: +'(gen_0':s3_0(n6_0), gen_0':s3_0(n6_0)) -> gen_0':s3_0(*(2, n6_0)), rt in Omega(1 + n6_0) *'(gen_0':s3_0(n719_0), gen_0':s3_0(n719_0)) -> *5_0, rt in Omega(n719_0 + n719_0^2) app(gen_nil:cons4_0(n13211_0), gen_nil:cons4_0(b)) -> gen_nil:cons4_0(+(n13211_0, b)), rt in Omega(1 + n13211_0) sum(gen_nil:cons4_0(n14223_0)) -> gen_0':s3_0(0), rt in Omega(1 + n14223_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(0', gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: prod ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: prod(gen_nil:cons4_0(n14816_0)) -> *5_0, rt in Omega(n14816_0) Induction Base: prod(gen_nil:cons4_0(0)) Induction Step: prod(gen_nil:cons4_0(+(n14816_0, 1))) ->_R^Omega(1) *'(0', prod(gen_nil:cons4_0(n14816_0))) ->_IH *'(0', *5_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) BOUNDS(1, INF)