/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence max(n(x, y, z)) ->^+ max(z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [z / n(x, y, z)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) S is empty. Rewrite Strategy: FULL