/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 247 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 1661 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 27 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(x, z)), f(*'(x, x), half(s(y)), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: *'/0 +'/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, *', odd, half, f They will be analysed ascendingly in the following order: *' < f odd < f half < f ---------------------------------------- (8) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: -, *', odd, half, f They will be analysed ascendingly in the following order: *' < f odd < f half < f ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) -> gen_0':s:+':true:false2_0(0), rt in Omega(1 + n4_0) Induction Base: -(gen_0':s:+':true:false2_0(0), gen_0':s:+':true:false2_0(0)) ->_R^Omega(1) gen_0':s:+':true:false2_0(0) Induction Step: -(gen_0':s:+':true:false2_0(+(n4_0, 1)), gen_0':s:+':true:false2_0(+(n4_0, 1))) ->_R^Omega(1) -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) ->_IH gen_0':s:+':true:false2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: -, *', odd, half, f They will be analysed ascendingly in the following order: *' < f odd < f half < f ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Lemmas: -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) -> gen_0':s:+':true:false2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: *', odd, half, f They will be analysed ascendingly in the following order: *' < f odd < f half < f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s:+':true:false2_0(+(1, n304_0))) -> *3_0, rt in Omega(n304_0) Induction Base: *'(gen_0':s:+':true:false2_0(+(1, 0))) Induction Step: *'(gen_0':s:+':true:false2_0(+(1, +(n304_0, 1)))) ->_R^Omega(1) +'(*'(gen_0':s:+':true:false2_0(+(1, n304_0)))) ->_IH +'(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Lemmas: -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) -> gen_0':s:+':true:false2_0(0), rt in Omega(1 + n4_0) *'(gen_0':s:+':true:false2_0(+(1, n304_0))) -> *3_0, rt in Omega(n304_0) Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: odd, half, f They will be analysed ascendingly in the following order: odd < f half < f ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: odd(gen_0':s:+':true:false2_0(*(2, n1161_0))) -> false, rt in Omega(1 + n1161_0) Induction Base: odd(gen_0':s:+':true:false2_0(*(2, 0))) ->_R^Omega(1) false Induction Step: odd(gen_0':s:+':true:false2_0(*(2, +(n1161_0, 1)))) ->_R^Omega(1) odd(gen_0':s:+':true:false2_0(*(2, n1161_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Lemmas: -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) -> gen_0':s:+':true:false2_0(0), rt in Omega(1 + n4_0) *'(gen_0':s:+':true:false2_0(+(1, n304_0))) -> *3_0, rt in Omega(n304_0) odd(gen_0':s:+':true:false2_0(*(2, n1161_0))) -> false, rt in Omega(1 + n1161_0) Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: half, f They will be analysed ascendingly in the following order: half < f ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s:+':true:false2_0(*(2, n1363_0))) -> gen_0':s:+':true:false2_0(n1363_0), rt in Omega(1 + n1363_0) Induction Base: half(gen_0':s:+':true:false2_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s:+':true:false2_0(*(2, +(n1363_0, 1)))) ->_R^Omega(1) s(half(gen_0':s:+':true:false2_0(*(2, n1363_0)))) ->_IH s(gen_0':s:+':true:false2_0(c1364_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) *'(0') -> 0' *'(s(y)) -> +'(*'(y)) if(true, x, y) -> x if(false, x, y) -> y odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0')) f(x, 0', z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z)) Types: - :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false 0' :: 0':s:+':true:false s :: 0':s:+':true:false -> 0':s:+':true:false *' :: 0':s:+':true:false -> 0':s:+':true:false +' :: 0':s:+':true:false -> 0':s:+':true:false if :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false true :: 0':s:+':true:false false :: 0':s:+':true:false odd :: 0':s:+':true:false -> 0':s:+':true:false half :: 0':s:+':true:false -> 0':s:+':true:false pow :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false f :: 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false -> 0':s:+':true:false hole_0':s:+':true:false1_0 :: 0':s:+':true:false gen_0':s:+':true:false2_0 :: Nat -> 0':s:+':true:false Lemmas: -(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) -> gen_0':s:+':true:false2_0(0), rt in Omega(1 + n4_0) *'(gen_0':s:+':true:false2_0(+(1, n304_0))) -> *3_0, rt in Omega(n304_0) odd(gen_0':s:+':true:false2_0(*(2, n1161_0))) -> false, rt in Omega(1 + n1161_0) half(gen_0':s:+':true:false2_0(*(2, n1363_0))) -> gen_0':s:+':true:false2_0(n1363_0), rt in Omega(1 + n1363_0) Generator Equations: gen_0':s:+':true:false2_0(0) <=> 0' gen_0':s:+':true:false2_0(+(x, 1)) <=> s(gen_0':s:+':true:false2_0(x)) The following defined symbols remain to be analysed: f