/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 257 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 64 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) <=(0, y) -> true <=(s(x), 0) -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s <= :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if :: true:false -> true:false -> true:false -> true:false perfectp :: 0':s -> true:false f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, <=, f They will be analysed ascendingly in the following order: - < f <= < f ---------------------------------------- (6) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s <= :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if :: true:false -> true:false -> true:false -> true:false perfectp :: 0':s -> true:false f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, <=, f They will be analysed ascendingly in the following order: - < f <= < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s <= :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if :: true:false -> true:false -> true:false -> true:false perfectp :: 0':s -> true:false f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, <=, f They will be analysed ascendingly in the following order: - < f <= < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s <= :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if :: true:false -> true:false -> true:false -> true:false perfectp :: 0':s -> true:false f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: <=, f They will be analysed ascendingly in the following order: <= < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: <=(gen_0':s3_0(n273_0), gen_0':s3_0(n273_0)) -> true, rt in Omega(1 + n273_0) Induction Base: <=(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: <=(gen_0':s3_0(+(n273_0, 1)), gen_0':s3_0(+(n273_0, 1))) ->_R^Omega(1) <=(gen_0':s3_0(n273_0), gen_0':s3_0(n273_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: -(x, 0') -> x -(s(x), s(y)) -> -(x, y) <=(0', y) -> true <=(s(x), 0') -> false <=(s(x), s(y)) -> <=(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0') -> false perfectp(s(x)) -> f(x, s(0'), s(x), s(x)) f(0', y, 0', u) -> true f(0', y, s(z), u) -> false f(s(x), 0', z, u) -> f(x, u, -(z, s(x)), u) f(s(x), s(y), z, u) -> if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u)) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s <= :: 0':s -> 0':s -> true:false true :: true:false false :: true:false if :: true:false -> true:false -> true:false -> true:false perfectp :: 0':s -> true:false f :: 0':s -> 0':s -> 0':s -> 0':s -> true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) <=(gen_0':s3_0(n273_0), gen_0':s3_0(n273_0)) -> true, rt in Omega(1 + n273_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: f