/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) CompleteCoflocoProof [FINISHED, 342 ms] (14) BOUNDS(1, n^1) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 255 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] (28) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0) -> 0 div(0, y) -> 0 div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: div(s([]), s(y)) div(s(x), s([])) The defined contexts are: if([], 0, s(x1)) if(x0, 0, s([])) div([], s(x1)) lt([], x1) -([], x1) [] just represents basic- or constructor-terms in the following defined contexts: if([], 0, s(x1)) div([], s(x1)) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: -(x, 0) -> x -(0, s(y)) -> 0 -(s(x), s(y)) -> -(x, y) lt(x, 0) -> false lt(0, s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0) -> 0 div(0, y) -> 0 div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: -(x, 0) -> x [1] -(0, s(y)) -> 0 [1] -(s(x), s(y)) -> -(x, y) [1] lt(x, 0) -> false [1] lt(0, s(y)) -> true [1] lt(s(x), s(y)) -> lt(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] div(x, 0) -> 0 [1] div(0, y) -> 0 [1] div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y)))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: - => minus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(0, s(y)) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] lt(x, 0) -> false [1] lt(0, s(y)) -> true [1] lt(s(x), s(y)) -> lt(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] div(x, 0) -> 0 [1] div(0, y) -> 0 [1] div(s(x), s(y)) -> if(lt(x, y), 0, s(div(minus(x, y), s(y)))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(0, s(y)) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] lt(x, 0) -> false [1] lt(0, s(y)) -> true [1] lt(s(x), s(y)) -> lt(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] div(x, 0) -> 0 [1] div(0, y) -> 0 [1] div(s(x), s(y)) -> if(lt(x, y), 0, s(div(minus(x, y), s(y)))) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s lt :: 0:s -> 0:s -> false:true false :: false:true true :: false:true if :: false:true -> 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, 0) -> x [1] minus(0, s(y)) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] lt(x, 0) -> false [1] lt(0, s(y)) -> true [1] lt(s(x), s(y)) -> lt(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] div(x, 0) -> 0 [1] div(0, y) -> 0 [1] div(s(x), s(y)) -> if(lt(x, y), 0, s(div(minus(x, y), s(y)))) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s lt :: 0:s -> 0:s -> false:true false :: false:true true :: false:true if :: false:true -> 0:s -> 0:s -> 0:s div :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 false => 0 true => 1 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> if(lt(x, y), 0, 1 + div(minus(x, y), 1 + y)) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x div(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 div(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 lt(z, z') -{ 1 }-> lt(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x lt(z, z') -{ 1 }-> 1 :|: z' = 1 + y, y >= 0, z = 0 lt(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (13) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V12),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V12),0,[lt(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V12),0,[if(V1, V, V12, Out)],[V1 >= 0,V >= 0,V12 >= 0]). eq(start(V1, V, V12),0,[div(V1, V, Out)],[V1 >= 0,V >= 0]). eq(minus(V1, V, Out),1,[],[Out = V2,V2 >= 0,V1 = V2,V = 0]). eq(minus(V1, V, Out),1,[],[Out = 0,V = 1 + V3,V3 >= 0,V1 = 0]). eq(minus(V1, V, Out),1,[minus(V4, V5, Ret)],[Out = Ret,V = 1 + V5,V4 >= 0,V5 >= 0,V1 = 1 + V4]). eq(lt(V1, V, Out),1,[],[Out = 0,V6 >= 0,V1 = V6,V = 0]). eq(lt(V1, V, Out),1,[],[Out = 1,V = 1 + V7,V7 >= 0,V1 = 0]). eq(lt(V1, V, Out),1,[lt(V8, V9, Ret1)],[Out = Ret1,V = 1 + V9,V8 >= 0,V9 >= 0,V1 = 1 + V8]). eq(if(V1, V, V12, Out),1,[],[Out = V11,V = V11,V12 = V10,V1 = 1,V11 >= 0,V10 >= 0]). eq(if(V1, V, V12, Out),1,[],[Out = V13,V = V14,V12 = V13,V14 >= 0,V13 >= 0,V1 = 0]). eq(div(V1, V, Out),1,[],[Out = 0,V15 >= 0,V1 = V15,V = 0]). eq(div(V1, V, Out),1,[],[Out = 0,V16 >= 0,V1 = 0,V = V16]). eq(div(V1, V, Out),1,[lt(V17, V18, Ret0),minus(V17, V18, Ret210),div(Ret210, 1 + V18, Ret21),if(Ret0, 0, 1 + Ret21, Ret2)],[Out = Ret2,V = 1 + V18,V17 >= 0,V18 >= 0,V1 = 1 + V17]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). input_output_vars(lt(V1,V,Out),[V1,V],[Out]). input_output_vars(if(V1,V,V12,Out),[V1,V,V12],[Out]). input_output_vars(div(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [if/4] 1. recursive : [lt/3] 2. recursive : [minus/3] 3. recursive [non_tail] : [(div)/3] 4. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into if/4 1. SCC is partially evaluated into lt/3 2. SCC is partially evaluated into minus/3 3. SCC is partially evaluated into (div)/3 4. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations if/4 * CE 11 is refined into CE [16] * CE 12 is refined into CE [17] ### Cost equations --> "Loop" of if/4 * CEs [16] --> Loop 13 * CEs [17] --> Loop 14 ### Ranking functions of CR if(V1,V,V12,Out) #### Partial ranking functions of CR if(V1,V,V12,Out) ### Specialization of cost equations lt/3 * CE 10 is refined into CE [18] * CE 8 is refined into CE [19] * CE 9 is refined into CE [20] ### Cost equations --> "Loop" of lt/3 * CEs [19] --> Loop 15 * CEs [20] --> Loop 16 * CEs [18] --> Loop 17 ### Ranking functions of CR lt(V1,V,Out) * RF of phase [17]: [V,V1] #### Partial ranking functions of CR lt(V1,V,Out) * Partial RF of phase [17]: - RF of loop [17:1]: V V1 ### Specialization of cost equations minus/3 * CE 7 is refined into CE [21] * CE 5 is refined into CE [22] * CE 6 is refined into CE [23] ### Cost equations --> "Loop" of minus/3 * CEs [22] --> Loop 18 * CEs [23] --> Loop 19 * CEs [21] --> Loop 20 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [20]: [V,V1] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [20]: - RF of loop [20:1]: V V1 ### Specialization of cost equations (div)/3 * CE 15 is refined into CE [24,25,26,27] * CE 13 is refined into CE [28] * CE 14 is refined into CE [29] ### Cost equations --> "Loop" of (div)/3 * CEs [28] --> Loop 21 * CEs [29] --> Loop 22 * CEs [26] --> Loop 23 * CEs [27] --> Loop 24 * CEs [25] --> Loop 25 * CEs [24] --> Loop 26 ### Ranking functions of CR div(V1,V,Out) * RF of phase [23]: [V1-1,V1-V+1] * RF of phase [25]: [V1] #### Partial ranking functions of CR div(V1,V,Out) * Partial RF of phase [23]: - RF of loop [23:1]: V1-1 V1-V+1 * Partial RF of phase [25]: - RF of loop [25:1]: V1 ### Specialization of cost equations start/3 * CE 1 is refined into CE [30,31,32,33] * CE 2 is refined into CE [34,35,36,37] * CE 3 is refined into CE [38,39] * CE 4 is refined into CE [40,41,42,43,44,45] ### Cost equations --> "Loop" of start/3 * CEs [33,36,43,45] --> Loop 27 * CEs [31,35,42] --> Loop 28 * CEs [32,37,41,44] --> Loop 29 * CEs [39] --> Loop 30 * CEs [30,34,38,40] --> Loop 31 ### Ranking functions of CR start(V1,V,V12) #### Partial ranking functions of CR start(V1,V,V12) Computing Bounds ===================================== #### Cost of chains of if(V1,V,V12,Out): * Chain [14]: 1 with precondition: [V1=0,V12=Out,V>=0,V12>=0] * Chain [13]: 1 with precondition: [V1=1,V=Out,V>=0,V12>=0] #### Cost of chains of lt(V1,V,Out): * Chain [[17],16]: 1*it(17)+1 Such that:it(17) =< V1 with precondition: [Out=1,V1>=1,V>=V1+1] * Chain [[17],15]: 1*it(17)+1 Such that:it(17) =< V with precondition: [Out=0,V>=1,V1>=V] * Chain [16]: 1 with precondition: [V1=0,Out=1,V>=1] * Chain [15]: 1 with precondition: [V=0,Out=0,V1>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[20],19]: 1*it(20)+1 Such that:it(20) =< V1 with precondition: [Out=0,V1>=1,V>=V1+1] * Chain [[20],18]: 1*it(20)+1 Such that:it(20) =< V with precondition: [V1=Out+V,V>=1,V1>=V] * Chain [19]: 1 with precondition: [V1=0,Out=0,V>=1] * Chain [18]: 1 with precondition: [V=0,V1=Out,V1>=0] #### Cost of chains of div(V1,V,Out): * Chain [[25],22]: 4*it(25)+1 Such that:it(25) =< Out with precondition: [V=1,V1=Out,V1>=1] * Chain [[23],26,22]: 4*it(23)+2*s(5)+5 Such that:it(23) =< V1-V+1 aux(4) =< V1 it(23) =< aux(4) s(5) =< aux(4) with precondition: [V>=2,Out>=1,V1+1>=2*Out+V] * Chain [[23],24,22]: 4*it(23)+4*s(5)+5 Such that:it(23) =< V1-V+1 aux(6) =< V1 s(5) =< aux(6) it(23) =< aux(6) with precondition: [V>=2,Out>=1,V1>=2*Out+V] * Chain [[23],22]: 4*it(23)+2*s(5)+1 Such that:it(23) =< V1-V+1 aux(7) =< V1 it(23) =< aux(7) s(5) =< aux(7) with precondition: [V>=2,Out>=1,V1+2>=2*Out+V] * Chain [26,22]: 5 with precondition: [V1=1,Out=0,V>=2] * Chain [24,22]: 2*s(7)+5 Such that:aux(5) =< V1 s(7) =< aux(5) with precondition: [Out=0,V1>=2,V>=V1+1] * Chain [22]: 1 with precondition: [V1=0,Out=0,V>=0] * Chain [21]: 1 with precondition: [V=0,Out=0,V1>=0] #### Cost of chains of start(V1,V,V12): * Chain [31]: 1 with precondition: [V1=0,V>=0] * Chain [30]: 1 with precondition: [V1=1,V>=0,V12>=0] * Chain [29]: 4*s(18)+5 Such that:aux(10) =< V1 s(18) =< aux(10) with precondition: [V1>=1,V>=V1+1] * Chain [28]: 1 with precondition: [V=0,V1>=0] * Chain [27]: 2*s(22)+12*s(24)+12*s(27)+5 Such that:s(26) =< V1-V+1 aux(11) =< V1 aux(12) =< V s(24) =< aux(11) s(22) =< aux(12) s(27) =< s(26) s(27) =< aux(11) with precondition: [V>=1,V1>=V] Closed-form bounds of start(V1,V,V12): ------------------------------------- * Chain [31] with precondition: [V1=0,V>=0] - Upper bound: 1 - Complexity: constant * Chain [30] with precondition: [V1=1,V>=0,V12>=0] - Upper bound: 1 - Complexity: constant * Chain [29] with precondition: [V1>=1,V>=V1+1] - Upper bound: 4*V1+5 - Complexity: n * Chain [28] with precondition: [V=0,V1>=0] - Upper bound: 1 - Complexity: constant * Chain [27] with precondition: [V>=1,V1>=V] - Upper bound: 24*V1-10*V+17 - Complexity: n ### Maximum cost of start(V1,V,V12): 8*V1+2*V+nat(V1-V+1)*12+(4*V1+4)+1 Asymptotic class: n * Total analysis performed in 284 ms. ---------------------------------------- (14) BOUNDS(1, n^1) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: TRS: Rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lt :: 0':s -> 0':s -> false:true false :: false:true true :: false:true if :: false:true -> 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: -, lt, div They will be analysed ascendingly in the following order: - < div lt < div ---------------------------------------- (20) Obligation: TRS: Rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lt :: 0':s -> 0':s -> false:true false :: false:true true :: false:true if :: false:true -> 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, lt, div They will be analysed ascendingly in the following order: - < div lt < div ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lt :: 0':s -> 0':s -> false:true false :: false:true true :: false:true if :: false:true -> 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: -, lt, div They will be analysed ascendingly in the following order: - < div lt < div ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: TRS: Rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lt :: 0':s -> 0':s -> false:true false :: false:true true :: false:true if :: false:true -> 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, div They will be analysed ascendingly in the following order: lt < div ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n368_0), gen_0':s3_0(n368_0)) -> false, rt in Omega(1 + n368_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) false Induction Step: lt(gen_0':s3_0(+(n368_0, 1)), gen_0':s3_0(+(n368_0, 1))) ->_R^Omega(1) lt(gen_0':s3_0(n368_0), gen_0':s3_0(n368_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: -(x, 0') -> x -(0', s(y)) -> 0' -(s(x), s(y)) -> -(x, y) lt(x, 0') -> false lt(0', s(y)) -> true lt(s(x), s(y)) -> lt(x, y) if(true, x, y) -> x if(false, x, y) -> y div(x, 0') -> 0' div(0', y) -> 0' div(s(x), s(y)) -> if(lt(x, y), 0', s(div(-(x, y), s(y)))) Types: - :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s lt :: 0':s -> 0':s -> false:true false :: false:true true :: false:true if :: false:true -> 0':s -> 0':s -> 0':s div :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Lemmas: -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) lt(gen_0':s3_0(n368_0), gen_0':s3_0(n368_0)) -> false, rt in Omega(1 + n368_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: div