/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> s(s(0)) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> s(s(0)) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> s(s(0)) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: p(0) -> s(s(0)) p(s(x)) -> x p(p(s(x))) -> p(x) le(p(s(x)), x) -> le(x, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) S is empty. Rewrite Strategy: FULL