/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: Sum. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: cons(x,y) -> x cons(x,y) -> y f(s(a()),s(b()),x) -> f(x,x,x) g(f(s(x),s(y),z)) -> g(f(x,y,z)) - Signature: {cons/2,f/3,g/1} / {a/0,b/0,s/1} - Obligation: runtime complexity wrt. defined symbols {cons,f,g} and constructors {a,b,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: cons(x,y) -> x cons(x,y) -> y f(s(a()),s(b()),x) -> f(x,x,x) g(f(s(x),s(y),z)) -> g(f(x,y,z)) - Signature: {cons/2,f/3,g/1} / {a/0,b/0,s/1} - Obligation: runtime complexity wrt. defined symbols {cons,f,g} and constructors {a,b,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) g#(f(s(x),s(y),z)) -> c_4(g#(f(x,y,z))) Weak DPs and mark the set of starting terms. * Step 3: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) g#(f(s(x),s(y),z)) -> c_4(g#(f(x,y,z))) - Strict TRS: cons(x,y) -> x cons(x,y) -> y f(s(a()),s(b()),x) -> f(x,x,x) g(f(s(x),s(y),z)) -> g(f(x,y,z)) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) * Step 4: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) The strictly oriented rules are moved into the weak component. ** Step 4.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: none Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [1] p(b) = [0] p(cons) = [0] p(f) = [1] x1 + [2] x3 + [0] p(g) = [0] p(s) = [1] x1 + [0] p(cons#) = [0] p(f#) = [8] x1 + [9] p(g#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [8] p(c_4) = [0] Following rules are strictly oriented: f#(s(a()),s(b()),x) = [17] > [8] = c_3(f#(x,x,x)) Following rules are (at-least) weakly oriented: cons#(x,y) = [0] >= [0] = c_1(x) cons#(x,y) = [0] >= [0] = c_2(y) ** Step 4.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Weak DPs: f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () ** Step 4.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Weak DPs: f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:cons#(x,y) -> c_1(x) -->_1 f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)):3 -->_1 cons#(x,y) -> c_2(y):2 -->_1 cons#(x,y) -> c_1(x):1 2:S:cons#(x,y) -> c_2(y) -->_1 f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)):3 -->_1 cons#(x,y) -> c_2(y):2 -->_1 cons#(x,y) -> c_1(x):1 3:W:f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) -->_1 f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(s(a()),s(b()),x) -> c_3(f#(x,x,x)) ** Step 4.b:2: PredecessorEstimationCP. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: cons#(x,y) -> c_1(x) 2: cons#(x,y) -> c_2(y) The strictly oriented rules are moved into the weak component. *** Step 4.b:2.a:1: NaturalMI. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: none Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [0] p(b) = [0] p(cons) = [0] p(f) = [0] p(g) = [0] p(s) = [0] p(cons#) = [5] p(f#) = [0] p(g#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] Following rules are strictly oriented: cons#(x,y) = [5] > [0] = c_1(x) cons#(x,y) = [5] > [0] = c_2(y) Following rules are (at-least) weakly oriented: *** Step 4.b:2.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () *** Step 4.b:2.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: cons#(x,y) -> c_1(x) cons#(x,y) -> c_2(y) - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:cons#(x,y) -> c_1(x) -->_1 cons#(x,y) -> c_2(y):2 -->_1 cons#(x,y) -> c_1(x):1 2:W:cons#(x,y) -> c_2(y) -->_1 cons#(x,y) -> c_2(y):2 -->_1 cons#(x,y) -> c_1(x):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: cons#(x,y) -> c_1(x) 2: cons#(x,y) -> c_2(y) *** Step 4.b:2.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Signature: {cons/2,f/3,g/1,cons#/2,f#/3,g#/1} / {a/0,b/0,s/1,c_1/1,c_2/1,c_3/1,c_4/1} - Obligation: runtime complexity wrt. defined symbols {cons#,f#,g#} and constructors {a,b,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))