/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 53 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 165 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 138 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 931 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 238 ms] (38) CpxRNTS (39) FinalProof [FINISHED, 0 ms] (40) BOUNDS(1, n^1) (41) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CpxTRS (43) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (44) typed CpxTrs (45) OrderProof [LOWER BOUND(ID), 0 ms] (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 295 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(s, id) -> s circ(id, s) -> s subst(a, id) -> a msubst(a, id) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(s, id) -> s circ(id, s) -> s subst(a, id) -> a msubst(a, id) -> a S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) [1] circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) [1] circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) [1] circ(s, id) -> s [1] circ(id, s) -> s [1] subst(a, id) -> a [1] msubst(a, id) -> a [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) [1] circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) [1] circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) [1] circ(s, id) -> s [1] circ(id, s) -> s [1] subst(a, id) -> a [1] msubst(a, id) -> a [1] The TRS has the following type information: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: circ_2 subst_2 msubst_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) [1] circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) [1] circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) [1] circ(s, id) -> s [1] circ(id, s) -> s [1] subst(a, id) -> a [1] msubst(a, id) -> a [1] The TRS has the following type information: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst const :: subst Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) [1] circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) [1] circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) [1] circ(s, id) -> s [1] circ(id, s) -> s [1] subst(a, id) -> a [1] msubst(a, id) -> a [1] The TRS has the following type information: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst const :: subst Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: lift => 0 id => 0 const => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> s :|: z = s, s >= 0, z' = 0 circ(z, z') -{ 1 }-> s :|: s >= 0, z = 0, z' = s circ(z, z') -{ 1 }-> 1 + a + circ(s, t) :|: z = 1 + 0 + s, a >= 0, z' = 1 + a + t, t >= 0, s >= 0 circ(z, z') -{ 1 }-> 1 + msubst(a, t) + circ(s, t) :|: z' = t, a >= 0, z = 1 + a + s, t >= 0, s >= 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(s, t) :|: z = 1 + 0 + s, z' = 1 + 0 + t, t >= 0, s >= 0 msubst(z, z') -{ 1 }-> a :|: z = a, a >= 0, z' = 0 subst(z, z') -{ 1 }-> a :|: z = a, a >= 0, z' = 0 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: msubst(z, z') -{ 1 }-> a :|: z = a, a >= 0, z' = 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> s :|: z = s, s >= 0, z' = 0 circ(z, z') -{ 1 }-> s :|: s >= 0, z = 0, z' = s circ(z, z') -{ 1 }-> 1 + a + circ(s, t) :|: z = 1 + 0 + s, a >= 0, z' = 1 + a + t, t >= 0, s >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, t) :|: z' = t, a >= 0, z = 1 + a + s, t >= 0, s >= 0, a = a', a' >= 0, t = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(s, t) :|: z = 1 + 0 + s, z' = 1 + 0 + t, t >= 0, s >= 0 msubst(z, z') -{ 1 }-> a :|: z = a, a >= 0, z' = 0 subst(z, z') -{ 1 }-> a :|: z = a, a >= 0, z' = 0 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { subst } { msubst } { circ } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {subst}, {msubst}, {circ} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {subst}, {msubst}, {circ} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: subst after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {subst}, {msubst}, {circ} Previous analysis results are: subst: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: subst after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {msubst}, {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {msubst}, {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: msubst after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {msubst}, {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] msubst: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: msubst after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] msubst: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] msubst: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: circ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: {circ} Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] msubst: runtime: O(1) [1], size: O(n^1) [z] circ: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: circ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 4*z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: circ(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 circ(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 circ(z, z') -{ 1 }-> 1 + a + circ(z - 1, t) :|: a >= 0, z' = 1 + a + t, t >= 0, z - 1 >= 0 circ(z, z') -{ 2 }-> 1 + a' + circ(s, z') :|: a >= 0, z = 1 + a + s, z' >= 0, s >= 0, a = a', a' >= 0, z' = 0 circ(z, z') -{ 1 }-> 1 + 0 + circ(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 msubst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 subst(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: subst: runtime: O(1) [1], size: O(n^1) [z] msubst: runtime: O(1) [1], size: O(n^1) [z] circ: runtime: O(n^1) [2 + 4*z], size: O(n^1) [z + z'] ---------------------------------------- (39) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (40) BOUNDS(1, n^1) ---------------------------------------- (41) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (42) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (43) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (44) Obligation: TRS: Rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Types: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst hole_cons:id1_0 :: cons:id hole_lift2_0 :: lift hole_subst3_0 :: subst gen_cons:id4_0 :: Nat -> cons:id ---------------------------------------- (45) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: circ, msubst They will be analysed ascendingly in the following order: circ = msubst ---------------------------------------- (46) Obligation: TRS: Rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Types: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst hole_cons:id1_0 :: cons:id hole_lift2_0 :: lift hole_subst3_0 :: subst gen_cons:id4_0 :: Nat -> cons:id Generator Equations: gen_cons:id4_0(0) <=> id gen_cons:id4_0(+(x, 1)) <=> cons(lift, gen_cons:id4_0(x)) The following defined symbols remain to be analysed: msubst, circ They will be analysed ascendingly in the following order: circ = msubst ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: circ(gen_cons:id4_0(n16_0), gen_cons:id4_0(n16_0)) -> gen_cons:id4_0(n16_0), rt in Omega(1 + n16_0) Induction Base: circ(gen_cons:id4_0(0), gen_cons:id4_0(0)) ->_R^Omega(1) gen_cons:id4_0(0) Induction Step: circ(gen_cons:id4_0(+(n16_0, 1)), gen_cons:id4_0(+(n16_0, 1))) ->_R^Omega(1) cons(lift, circ(gen_cons:id4_0(n16_0), gen_cons:id4_0(n16_0))) ->_IH cons(lift, gen_cons:id4_0(c17_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Types: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst hole_cons:id1_0 :: cons:id hole_lift2_0 :: lift hole_subst3_0 :: subst gen_cons:id4_0 :: Nat -> cons:id Generator Equations: gen_cons:id4_0(0) <=> id gen_cons:id4_0(+(x, 1)) <=> cons(lift, gen_cons:id4_0(x)) The following defined symbols remain to be analysed: circ They will be analysed ascendingly in the following order: circ = msubst ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: TRS: Rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Types: circ :: cons:id -> cons:id -> cons:id cons :: lift -> cons:id -> cons:id msubst :: lift -> cons:id -> lift lift :: lift id :: cons:id subst :: subst -> cons:id -> subst hole_cons:id1_0 :: cons:id hole_lift2_0 :: lift hole_subst3_0 :: subst gen_cons:id4_0 :: Nat -> cons:id Lemmas: circ(gen_cons:id4_0(n16_0), gen_cons:id4_0(n16_0)) -> gen_cons:id4_0(n16_0), rt in Omega(1 + n16_0) Generator Equations: gen_cons:id4_0(0) <=> id gen_cons:id4_0(+(x, 1)) <=> cons(lift, gen_cons:id4_0(x)) The following defined symbols remain to be analysed: msubst They will be analysed ascendingly in the following order: circ = msubst