/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2} / {ackout/1,s/1,u22/1} - Obligation: runtime complexity wrt. defined symbols {ackin,u21} and constructors {ackout,s,u22} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2} / {ackout/1,s/1,u22/1} - Obligation: runtime complexity wrt. defined symbols {ackin,u21} and constructors {ackout,s,u22} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2} / {ackout/1,s/1,u22/1} - Obligation: runtime complexity wrt. defined symbols {ackin,u21} and constructors {ackout,s,u22} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: ackin(s(x),y){y -> s(y)} = ackin(s(x),s(y)) ->^+ u21(ackin(s(x),y),x) = C[ackin(s(x),y) = ackin(s(x),y){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2} / {ackout/1,s/1,u22/1} - Obligation: runtime complexity wrt. defined symbols {ackin,u21} and constructors {ackout,s,u22} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following weak dependency pairs: Strict DPs ackin#(s(X),s(Y)) -> c_1(u21#(ackin(s(X),Y),X)) u21#(ackout(X),Y) -> c_2(ackin#(Y,X)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ackin#(s(X),s(Y)) -> c_1(u21#(ackin(s(X),Y),X)) u21#(ackout(X),Y) -> c_2(ackin#(Y,X)) - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2,ackin#/2,u21#/2} / {ackout/1,s/1,u22/1,c_1/1,c_2/1} - Obligation: runtime complexity wrt. defined symbols {ackin#,u21#} and constructors {ackout,s,u22} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(u21) = {1}, uargs(u22) = {1}, uargs(u21#) = {1}, uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(ackin) = [0] p(ackout) = [3] p(s) = [1] x1 + [0] p(u21) = [1] x1 + [0] p(u22) = [1] x1 + [0] p(ackin#) = [8] x1 + [0] p(u21#) = [1] x1 + [8] x2 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] Following rules are strictly oriented: u21#(ackout(X),Y) = [8] Y + [3] > [8] Y + [0] = c_2(ackin#(Y,X)) u21(ackout(X),Y) = [3] > [0] = u22(ackin(Y,X)) Following rules are (at-least) weakly oriented: ackin#(s(X),s(Y)) = [8] X + [0] >= [8] X + [0] = c_1(u21#(ackin(s(X),Y),X)) ackin(s(X),s(Y)) = [0] >= [0] = u21(ackin(s(X),Y),X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ackin#(s(X),s(Y)) -> c_1(u21#(ackin(s(X),Y),X)) - Strict TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) - Weak DPs: u21#(ackout(X),Y) -> c_2(ackin#(Y,X)) - Weak TRS: u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2,ackin#/2,u21#/2} / {ackout/1,s/1,u22/1,c_1/1,c_2/1} - Obligation: runtime complexity wrt. defined symbols {ackin#,u21#} and constructors {ackout,s,u22} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(u21) = {1}, uargs(u22) = {1}, uargs(u21#) = {1}, uargs(c_1) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(ackin) = [1] x2 + [0] p(ackout) = [1] x1 + [0] p(s) = [1] x1 + [9] p(u21) = [1] x1 + [8] p(u22) = [1] x1 + [8] p(ackin#) = [1] x2 + [0] p(u21#) = [1] x1 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] Following rules are strictly oriented: ackin#(s(X),s(Y)) = [1] Y + [9] > [1] Y + [0] = c_1(u21#(ackin(s(X),Y),X)) ackin(s(X),s(Y)) = [1] Y + [9] > [1] Y + [8] = u21(ackin(s(X),Y),X) Following rules are (at-least) weakly oriented: u21#(ackout(X),Y) = [1] X + [0] >= [1] X + [0] = c_2(ackin#(Y,X)) u21(ackout(X),Y) = [1] X + [8] >= [1] X + [8] = u22(ackin(Y,X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: ackin#(s(X),s(Y)) -> c_1(u21#(ackin(s(X),Y),X)) u21#(ackout(X),Y) -> c_2(ackin#(Y,X)) - Weak TRS: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) - Signature: {ackin/2,u21/2,ackin#/2,u21#/2} / {ackout/1,s/1,u22/1,c_1/1,c_2/1} - Obligation: runtime complexity wrt. defined symbols {ackin#,u21#} and constructors {ackout,s,u22} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))