/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ifMinus(false(),s(X),Y) -> s(minus(X,Y)) ifMinus(true(),s(X),Y) -> 0() le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(0(),Y) -> 0() minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) - Signature: {ifMinus/3,le/2,minus/2,quot/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {ifMinus,le,minus,quot} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ifMinus(false(),s(X),Y) -> s(minus(X,Y)) ifMinus(true(),s(X),Y) -> 0() le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(0(),Y) -> 0() minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) - Signature: {ifMinus/3,le/2,minus/2,quot/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {ifMinus,le,minus,quot} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 3: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ifMinus(false(),s(X),Y) -> s(minus(X,Y)) ifMinus(true(),s(X),Y) -> 0() le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(0(),Y) -> 0() minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) - Signature: {ifMinus/3,le/2,minus/2,quot/2} / {0/0,false/0,s/1,true/0} - Obligation: runtime complexity wrt. defined symbols {ifMinus,le,minus,quot} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] WORST_CASE(Omega(n^1),?)