/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 256 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s ifMinus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, minus, quot They will be analysed ascendingly in the following order: le < minus minus < quot ---------------------------------------- (6) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s ifMinus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, quot They will be analysed ascendingly in the following order: le < minus minus < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s ifMinus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: le, minus, quot They will be analysed ascendingly in the following order: le < minus minus < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) minus(0', Y) -> 0' minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0' ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false minus :: 0':s -> 0':s -> 0':s ifMinus :: true:false -> 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, quot They will be analysed ascendingly in the following order: minus < quot