/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 240 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0) -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) Types: plus :: 0':s:Z -> 0':s:Z -> 0':s:Z 0' :: 0':s:Z s :: 0':s:Z -> 0':s:Z min :: 0':s:Z -> 0':s:Z -> 0':s:Z Z :: 0':s:Z quot :: 0':s:Z -> 0':s:Z -> 0':s:Z hole_0':s:Z1_0 :: 0':s:Z gen_0':s:Z2_0 :: Nat -> 0':s:Z ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, min, quot They will be analysed ascendingly in the following order: plus < min min < quot ---------------------------------------- (6) Obligation: TRS: Rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) Types: plus :: 0':s:Z -> 0':s:Z -> 0':s:Z 0' :: 0':s:Z s :: 0':s:Z -> 0':s:Z min :: 0':s:Z -> 0':s:Z -> 0':s:Z Z :: 0':s:Z quot :: 0':s:Z -> 0':s:Z -> 0':s:Z hole_0':s:Z1_0 :: 0':s:Z gen_0':s:Z2_0 :: Nat -> 0':s:Z Generator Equations: gen_0':s:Z2_0(0) <=> 0' gen_0':s:Z2_0(+(x, 1)) <=> s(gen_0':s:Z2_0(x)) The following defined symbols remain to be analysed: plus, min, quot They will be analysed ascendingly in the following order: plus < min min < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) -> gen_0':s:Z2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: plus(gen_0':s:Z2_0(0), gen_0':s:Z2_0(b)) ->_R^Omega(1) gen_0':s:Z2_0(b) Induction Step: plus(gen_0':s:Z2_0(+(n4_0, 1)), gen_0':s:Z2_0(b)) ->_R^Omega(1) s(plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b))) ->_IH s(gen_0':s:Z2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) Types: plus :: 0':s:Z -> 0':s:Z -> 0':s:Z 0' :: 0':s:Z s :: 0':s:Z -> 0':s:Z min :: 0':s:Z -> 0':s:Z -> 0':s:Z Z :: 0':s:Z quot :: 0':s:Z -> 0':s:Z -> 0':s:Z hole_0':s:Z1_0 :: 0':s:Z gen_0':s:Z2_0 :: Nat -> 0':s:Z Generator Equations: gen_0':s:Z2_0(0) <=> 0' gen_0':s:Z2_0(+(x, 1)) <=> s(gen_0':s:Z2_0(x)) The following defined symbols remain to be analysed: plus, min, quot They will be analysed ascendingly in the following order: plus < min min < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) Types: plus :: 0':s:Z -> 0':s:Z -> 0':s:Z 0' :: 0':s:Z s :: 0':s:Z -> 0':s:Z min :: 0':s:Z -> 0':s:Z -> 0':s:Z Z :: 0':s:Z quot :: 0':s:Z -> 0':s:Z -> 0':s:Z hole_0':s:Z1_0 :: 0':s:Z gen_0':s:Z2_0 :: Nat -> 0':s:Z Lemmas: plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) -> gen_0':s:Z2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:Z2_0(0) <=> 0' gen_0':s:Z2_0(+(x, 1)) <=> s(gen_0':s:Z2_0(x)) The following defined symbols remain to be analysed: min, quot They will be analysed ascendingly in the following order: min < quot ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) -> gen_0':s:Z2_0(0), rt in Omega(1 + n457_0) Induction Base: min(gen_0':s:Z2_0(0), gen_0':s:Z2_0(0)) ->_R^Omega(1) gen_0':s:Z2_0(0) Induction Step: min(gen_0':s:Z2_0(+(n457_0, 1)), gen_0':s:Z2_0(+(n457_0, 1))) ->_R^Omega(1) min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) ->_IH gen_0':s:Z2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) min(X, 0') -> X min(s(X), s(Y)) -> min(X, Y) min(min(X, Y), Z) -> min(X, plus(Y, Z)) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) Types: plus :: 0':s:Z -> 0':s:Z -> 0':s:Z 0' :: 0':s:Z s :: 0':s:Z -> 0':s:Z min :: 0':s:Z -> 0':s:Z -> 0':s:Z Z :: 0':s:Z quot :: 0':s:Z -> 0':s:Z -> 0':s:Z hole_0':s:Z1_0 :: 0':s:Z gen_0':s:Z2_0 :: Nat -> 0':s:Z Lemmas: plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) -> gen_0':s:Z2_0(+(n4_0, b)), rt in Omega(1 + n4_0) min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) -> gen_0':s:Z2_0(0), rt in Omega(1 + n457_0) Generator Equations: gen_0':s:Z2_0(0) <=> 0' gen_0':s:Z2_0(+(x, 1)) <=> s(gen_0':s:Z2_0(x)) The following defined symbols remain to be analysed: quot