/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(X)) -> true lt(s(X), 0) -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(X)) -> true lt(s(X), 0) -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence split(N, add(M, Y)) ->^+ f_1(split(N, Y), N, M, Y) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [Y / add(M, Y)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(X)) -> true lt(s(X), 0) -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: lt(0, s(X)) -> true lt(s(X), 0) -> false lt(s(X), s(Y)) -> lt(X, Y) append(nil, Y) -> Y append(add(N, X), Y) -> add(N, append(X, Y)) split(N, nil) -> pair(nil, nil) split(N, add(M, Y)) -> f_1(split(N, Y), N, M, Y) f_1(pair(X, Z), N, M, Y) -> f_2(lt(N, M), N, M, Y, X, Z) f_2(true, N, M, Y, X, Z) -> pair(X, add(M, Z)) f_2(false, N, M, Y, X, Z) -> pair(add(M, X), Z) qsort(nil) -> nil qsort(add(N, X)) -> f_3(split(N, X), N, X) f_3(pair(Y, Z), N, X) -> append(qsort(Y), add(X, qsort(Z))) S is empty. Rewrite Strategy: FULL