/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 450 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), X, Y) u21(dout(DX), X, Y) -> u22(din(der(Y)), X, Y, DX) u22(dout(DY), X, Y, DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X)), X) u41(dout(DX), X) -> u42(din(der(DX)), X, DX) u42(dout(DDX), X, DX) -> dout(DDX) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), X, Y) u21(dout(DX), X, Y) -> u22(din(der(Y)), X, Y, DX) u22(dout(DY), X, Y, DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X)), X) u41(dout(DX), X) -> u42(din(der(DX)), X, DX) u42(dout(DDX), X, DX) -> dout(DDX) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: u21/1 u22/1 u22/2 u41/1 u42/1 u42/2 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: din, u41 They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (8) Obligation: TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: u41, din They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: din(gen_plus:der:times3_0(+(2, n29_0))) -> *4_0, rt in Omega(n29_0) Induction Base: din(gen_plus:der:times3_0(+(2, 0))) Induction Step: din(gen_plus:der:times3_0(+(2, +(n29_0, 1)))) ->_R^Omega(1) u41(din(der(gen_plus:der:times3_0(+(1, n29_0))))) ->_IH u41(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: din They will be analysed ascendingly in the following order: din = u41 ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: din(der(plus(X, Y))) -> u21(din(der(X)), Y) u21(dout(DX), Y) -> u22(din(der(Y)), DX) u22(dout(DY), DX) -> dout(plus(DX, DY)) din(der(times(X, Y))) -> u31(din(der(X)), X, Y) u31(dout(DX), X, Y) -> u32(din(der(Y)), X, Y, DX) u32(dout(DY), X, Y, DX) -> dout(plus(times(X, DY), times(Y, DX))) din(der(der(X))) -> u41(din(der(X))) u41(dout(DX)) -> u42(din(der(DX))) u42(dout(DDX)) -> dout(DDX) Types: din :: plus:der:times -> dout der :: plus:der:times -> plus:der:times plus :: plus:der:times -> plus:der:times -> plus:der:times u21 :: dout -> plus:der:times -> dout dout :: plus:der:times -> dout u22 :: dout -> plus:der:times -> dout times :: plus:der:times -> plus:der:times -> plus:der:times u31 :: dout -> plus:der:times -> plus:der:times -> dout u32 :: dout -> plus:der:times -> plus:der:times -> plus:der:times -> dout u41 :: dout -> dout u42 :: dout -> dout hole_dout1_0 :: dout hole_plus:der:times2_0 :: plus:der:times gen_plus:der:times3_0 :: Nat -> plus:der:times Lemmas: din(gen_plus:der:times3_0(+(2, n29_0))) -> *4_0, rt in Omega(n29_0) Generator Equations: gen_plus:der:times3_0(0) <=> hole_plus:der:times2_0 gen_plus:der:times3_0(+(x, 1)) <=> der(gen_plus:der:times3_0(x)) The following defined symbols remain to be analysed: u41 They will be analysed ascendingly in the following order: din = u41