/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 304 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 43 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 26 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] (18) proven lower bound (19) LowerBoundPropagationProof [FINISHED, 0 ms] (20) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: eq, le, min, replace, selsort They will be analysed ascendingly in the following order: eq < replace eq < selsort le < min min < selsort replace < selsort ---------------------------------------- (6) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, le, min, replace, selsort They will be analysed ascendingly in the following order: eq < replace eq < selsort le < min min < selsort replace < selsort ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: eq(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: eq, le, min, replace, selsort They will be analysed ascendingly in the following order: eq < replace eq < selsort le < min min < selsort replace < selsort ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: le, min, replace, selsort They will be analysed ascendingly in the following order: le < min min < selsort replace < selsort ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s4_0(n530_0), gen_0':s4_0(n530_0)) -> true, rt in Omega(1 + n530_0) Induction Base: le(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s4_0(+(n530_0, 1)), gen_0':s4_0(+(n530_0, 1))) ->_R^Omega(1) le(gen_0':s4_0(n530_0), gen_0':s4_0(n530_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) le(gen_0':s4_0(n530_0), gen_0':s4_0(n530_0)) -> true, rt in Omega(1 + n530_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: min, replace, selsort They will be analysed ascendingly in the following order: min < selsort replace < selsort ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: min(gen_nil:cons5_0(+(1, n847_0))) -> gen_0':s4_0(0), rt in Omega(1 + n847_0) Induction Base: min(gen_nil:cons5_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: min(gen_nil:cons5_0(+(1, +(n847_0, 1)))) ->_R^Omega(1) ifmin(le(0', 0'), cons(0', cons(0', gen_nil:cons5_0(n847_0)))) ->_L^Omega(1) ifmin(true, cons(0', cons(0', gen_nil:cons5_0(n847_0)))) ->_R^Omega(1) min(cons(0', gen_nil:cons5_0(n847_0))) ->_IH gen_0':s4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) le(gen_0':s4_0(n530_0), gen_0':s4_0(n530_0)) -> true, rt in Omega(1 + n530_0) min(gen_nil:cons5_0(+(1, n847_0))) -> gen_0':s4_0(0), rt in Omega(1 + n847_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: replace, selsort They will be analysed ascendingly in the following order: replace < selsort ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: selsort(gen_nil:cons5_0(n1534_0)) -> gen_nil:cons5_0(n1534_0), rt in Omega(1 + n1534_0 + n1534_0^2) Induction Base: selsort(gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: selsort(gen_nil:cons5_0(+(n1534_0, 1))) ->_R^Omega(1) ifselsort(eq(0', min(cons(0', gen_nil:cons5_0(n1534_0)))), cons(0', gen_nil:cons5_0(n1534_0))) ->_L^Omega(1 + n1534_0) ifselsort(eq(0', gen_0':s4_0(0)), cons(0', gen_nil:cons5_0(n1534_0))) ->_L^Omega(1) ifselsort(true, cons(0', gen_nil:cons5_0(n1534_0))) ->_R^Omega(1) cons(0', selsort(gen_nil:cons5_0(n1534_0))) ->_IH cons(0', gen_nil:cons5_0(c1535_0)) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: eq(0', 0') -> true eq(0', s(Y)) -> false eq(s(X), 0') -> false eq(s(X), s(Y)) -> eq(X, Y) le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0', nil)) -> 0' min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Types: eq :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false le :: 0':s -> 0':s -> true:false min :: nil:cons -> 0':s cons :: 0':s -> nil:cons -> nil:cons nil :: nil:cons ifmin :: true:false -> nil:cons -> 0':s replace :: 0':s -> 0':s -> nil:cons -> nil:cons ifrepl :: true:false -> 0':s -> 0':s -> nil:cons -> nil:cons selsort :: nil:cons -> nil:cons ifselsort :: true:false -> nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) le(gen_0':s4_0(n530_0), gen_0':s4_0(n530_0)) -> true, rt in Omega(1 + n530_0) min(gen_nil:cons5_0(+(1, n847_0))) -> gen_0':s4_0(0), rt in Omega(1 + n847_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: selsort ---------------------------------------- (19) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (20) BOUNDS(n^2, INF)