/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 933 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0) -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0) -> false le(0, Y) -> true gcd(0, Y) -> 0 gcd(s(X), 0) -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) Types: minus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' pred :: s:0' -> s:0' 0' :: s:0' le :: s:0' -> s:0' -> false:true false :: false:true true :: false:true gcd :: s:0' -> s:0' -> s:0' if :: false:true -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, le, gcd They will be analysed ascendingly in the following order: minus < gcd le < gcd ---------------------------------------- (6) Obligation: TRS: Rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) Types: minus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' pred :: s:0' -> s:0' 0' :: s:0' le :: s:0' -> s:0' -> false:true false :: false:true true :: false:true gcd :: s:0' -> s:0' -> s:0' if :: false:true -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: minus, le, gcd They will be analysed ascendingly in the following order: minus < gcd le < gcd ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, 0))) Induction Step: minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) pred(minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0)))) ->_IH pred(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) Types: minus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' pred :: s:0' -> s:0' 0' :: s:0' le :: s:0' -> s:0' -> false:true false :: false:true true :: false:true gcd :: s:0' -> s:0' -> s:0' if :: false:true -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: minus, le, gcd They will be analysed ascendingly in the following order: minus < gcd le < gcd ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) Types: minus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' pred :: s:0' -> s:0' 0' :: s:0' le :: s:0' -> s:0' -> false:true false :: false:true true :: false:true gcd :: s:0' -> s:0' -> s:0' if :: false:true -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Lemmas: minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: le, gcd They will be analysed ascendingly in the following order: le < gcd ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_s:0'3_0(+(1, n2357_0)), gen_s:0'3_0(n2357_0)) -> false, rt in Omega(1 + n2357_0) Induction Base: le(gen_s:0'3_0(+(1, 0)), gen_s:0'3_0(0)) ->_R^Omega(1) false Induction Step: le(gen_s:0'3_0(+(1, +(n2357_0, 1))), gen_s:0'3_0(+(n2357_0, 1))) ->_R^Omega(1) le(gen_s:0'3_0(+(1, n2357_0)), gen_s:0'3_0(n2357_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(X, s(Y)) -> pred(minus(X, Y)) minus(X, 0') -> X pred(s(X)) -> X le(s(X), s(Y)) -> le(X, Y) le(s(X), 0') -> false le(0', Y) -> true gcd(0', Y) -> 0' gcd(s(X), 0') -> s(X) gcd(s(X), s(Y)) -> if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) -> gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) -> gcd(minus(Y, X), s(X)) Types: minus :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' pred :: s:0' -> s:0' 0' :: s:0' le :: s:0' -> s:0' -> false:true false :: false:true true :: false:true gcd :: s:0' -> s:0' -> s:0' if :: false:true -> s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Lemmas: minus(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) le(gen_s:0'3_0(+(1, n2357_0)), gen_s:0'3_0(n2357_0)) -> false, rt in Omega(1 + n2357_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: gcd