/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 253 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 5 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 17 ms] (20) proven lower bound (21) LowerBoundPropagationProof [FINISHED, 0 ms] (22) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, app, low, high, quicksort They will be analysed ascendingly in the following order: le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (6) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: le, app, low, high, quicksort They will be analysed ascendingly in the following order: le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: le(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) ->_R^Omega(1) le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: le, app, low, high, quicksort They will be analysed ascendingly in the following order: le < low le < high app < quicksort low < quicksort high < quicksort ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: app, low, high, quicksort They will be analysed ascendingly in the following order: app < quicksort low < quicksort high < quicksort ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n288_0, b)), rt in Omega(1 + n288_0) Induction Base: app(gen_nil:cons5_0(0), gen_nil:cons5_0(b)) ->_R^Omega(1) gen_nil:cons5_0(b) Induction Step: app(gen_nil:cons5_0(+(n288_0, 1)), gen_nil:cons5_0(b)) ->_R^Omega(1) cons(0', app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b))) ->_IH cons(0', gen_nil:cons5_0(+(b, c289_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n288_0, b)), rt in Omega(1 + n288_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: low, high, quicksort They will be analysed ascendingly in the following order: low < quicksort high < quicksort ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: low(gen_0':s4_0(0), gen_nil:cons5_0(n1123_0)) -> gen_nil:cons5_0(n1123_0), rt in Omega(1 + n1123_0) Induction Base: low(gen_0':s4_0(0), gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: low(gen_0':s4_0(0), gen_nil:cons5_0(+(n1123_0, 1))) ->_R^Omega(1) iflow(le(0', gen_0':s4_0(0)), gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n1123_0))) ->_L^Omega(1) iflow(true, gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n1123_0))) ->_R^Omega(1) cons(0', low(gen_0':s4_0(0), gen_nil:cons5_0(n1123_0))) ->_IH cons(0', gen_nil:cons5_0(c1124_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n288_0, b)), rt in Omega(1 + n288_0) low(gen_0':s4_0(0), gen_nil:cons5_0(n1123_0)) -> gen_nil:cons5_0(n1123_0), rt in Omega(1 + n1123_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: high, quicksort They will be analysed ascendingly in the following order: high < quicksort ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: high(gen_0':s4_0(0), gen_nil:cons5_0(n1630_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1630_0) Induction Base: high(gen_0':s4_0(0), gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: high(gen_0':s4_0(0), gen_nil:cons5_0(+(n1630_0, 1))) ->_R^Omega(1) ifhigh(le(0', gen_0':s4_0(0)), gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n1630_0))) ->_L^Omega(1) ifhigh(true, gen_0':s4_0(0), cons(0', gen_nil:cons5_0(n1630_0))) ->_R^Omega(1) high(gen_0':s4_0(0), gen_nil:cons5_0(n1630_0)) ->_IH gen_nil:cons5_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n288_0, b)), rt in Omega(1 + n288_0) low(gen_0':s4_0(0), gen_nil:cons5_0(n1123_0)) -> gen_nil:cons5_0(n1123_0), rt in Omega(1 + n1123_0) high(gen_0':s4_0(0), gen_nil:cons5_0(n1630_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1630_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: quicksort ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: quicksort(gen_nil:cons5_0(n2133_0)) -> gen_nil:cons5_0(n2133_0), rt in Omega(1 + n2133_0 + n2133_0^2) Induction Base: quicksort(gen_nil:cons5_0(0)) ->_R^Omega(1) nil Induction Step: quicksort(gen_nil:cons5_0(+(n2133_0, 1))) ->_R^Omega(1) app(quicksort(low(0', gen_nil:cons5_0(n2133_0))), cons(0', quicksort(high(0', gen_nil:cons5_0(n2133_0))))) ->_L^Omega(1 + n2133_0) app(quicksort(gen_nil:cons5_0(n2133_0)), cons(0', quicksort(high(0', gen_nil:cons5_0(n2133_0))))) ->_IH app(gen_nil:cons5_0(c2134_0), cons(0', quicksort(high(0', gen_nil:cons5_0(n2133_0))))) ->_L^Omega(1 + n2133_0) app(gen_nil:cons5_0(n2133_0), cons(0', quicksort(gen_nil:cons5_0(0)))) ->_R^Omega(1) app(gen_nil:cons5_0(n2133_0), cons(0', nil)) ->_L^Omega(1 + n2133_0) gen_nil:cons5_0(+(n2133_0, +(0, 1))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (20) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: le(0', Y) -> true le(s(X), 0') -> false le(s(X), s(Y)) -> le(X, Y) app(nil, Y) -> Y app(cons(N, L), Y) -> cons(N, app(L, Y)) low(N, nil) -> nil low(N, cons(M, L)) -> iflow(le(M, N), N, cons(M, L)) iflow(true, N, cons(M, L)) -> cons(M, low(N, L)) iflow(false, N, cons(M, L)) -> low(N, L) high(N, nil) -> nil high(N, cons(M, L)) -> ifhigh(le(M, N), N, cons(M, L)) ifhigh(true, N, cons(M, L)) -> high(N, L) ifhigh(false, N, cons(M, L)) -> cons(M, high(N, L)) quicksort(nil) -> nil quicksort(cons(N, L)) -> app(quicksort(low(N, L)), cons(N, quicksort(high(N, L)))) Types: le :: 0':s -> 0':s -> true:false 0' :: 0':s true :: true:false s :: 0':s -> 0':s false :: true:false app :: nil:cons -> nil:cons -> nil:cons nil :: nil:cons cons :: 0':s -> nil:cons -> nil:cons low :: 0':s -> nil:cons -> nil:cons iflow :: true:false -> 0':s -> nil:cons -> nil:cons high :: 0':s -> nil:cons -> nil:cons ifhigh :: true:false -> 0':s -> nil:cons -> nil:cons quicksort :: nil:cons -> nil:cons hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s hole_nil:cons3_0 :: nil:cons gen_0':s4_0 :: Nat -> 0':s gen_nil:cons5_0 :: Nat -> nil:cons Lemmas: le(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) -> true, rt in Omega(1 + n7_0) app(gen_nil:cons5_0(n288_0), gen_nil:cons5_0(b)) -> gen_nil:cons5_0(+(n288_0, b)), rt in Omega(1 + n288_0) low(gen_0':s4_0(0), gen_nil:cons5_0(n1123_0)) -> gen_nil:cons5_0(n1123_0), rt in Omega(1 + n1123_0) high(gen_0':s4_0(0), gen_nil:cons5_0(n1630_0)) -> gen_nil:cons5_0(0), rt in Omega(1 + n1630_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) gen_nil:cons5_0(0) <=> nil gen_nil:cons5_0(+(x, 1)) <=> cons(0', gen_nil:cons5_0(x)) The following defined symbols remain to be analysed: quicksort ---------------------------------------- (21) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (22) BOUNDS(n^2, INF)