/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 252 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 588 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^2, INF) (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0))), k(n(s(x), s(y)), s(s(0))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0, y) -> 0 n(x, 0) -> 0 n(s(x), s(y)) -> s(n(x, y)) m(0, y) -> y m(x, 0) -> x m(s(x), s(y)) -> s(m(x, y)) k(0, s(y)) -> 0 k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0, y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0) -> true f(s(x)) -> h(x) h(0) -> false h(s(x)) -> f(x) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, f, k, minus, m, n, p, gt, h They will be analysed ascendingly in the following order: f < g k < g minus < g m < g n < g f = h minus < k gt < p ---------------------------------------- (6) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: minus, g, f, k, m, n, p, gt, h They will be analysed ascendingly in the following order: f < g k < g minus < g m < g n < g f = h minus < k gt < p ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) Induction Base: minus(gen_s:0':true:false2_0(0), gen_s:0':true:false2_0(0)) ->_R^Omega(1) gen_s:0':true:false2_0(0) Induction Step: minus(gen_s:0':true:false2_0(+(n4_0, 1)), gen_s:0':true:false2_0(+(n4_0, 1))) ->_R^Omega(1) minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) ->_IH gen_s:0':true:false2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: minus, g, f, k, m, n, p, gt, h They will be analysed ascendingly in the following order: f < g k < g minus < g m < g n < g f = h minus < k gt < p ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: k, g, f, m, n, p, gt, h They will be analysed ascendingly in the following order: f < g k < g m < g n < g f = h gt < p ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) Induction Base: m(gen_s:0':true:false2_0(0), gen_s:0':true:false2_0(0)) ->_R^Omega(1) gen_s:0':true:false2_0(0) Induction Step: m(gen_s:0':true:false2_0(+(n472_0, 1)), gen_s:0':true:false2_0(+(n472_0, 1))) ->_R^Omega(1) s(m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0))) ->_IH s(gen_s:0':true:false2_0(c473_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: n, g, f, p, gt, h They will be analysed ascendingly in the following order: f < g n < g f = h gt < p ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) Induction Base: n(gen_s:0':true:false2_0(0), gen_s:0':true:false2_0(0)) ->_R^Omega(1) 0' Induction Step: n(gen_s:0':true:false2_0(+(n1010_0, 1)), gen_s:0':true:false2_0(+(n1010_0, 1))) ->_R^Omega(1) s(n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0))) ->_IH s(gen_s:0':true:false2_0(c1011_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: gt, g, f, p, h They will be analysed ascendingly in the following order: f < g f = h gt < p ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) -> true, rt in Omega(1 + n1446_0) Induction Base: gt(gen_s:0':true:false2_0(+(1, 0)), gen_s:0':true:false2_0(0)) ->_R^Omega(1) true Induction Step: gt(gen_s:0':true:false2_0(+(1, +(n1446_0, 1))), gen_s:0':true:false2_0(+(n1446_0, 1))) ->_R^Omega(1) gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) -> true, rt in Omega(1 + n1446_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: p, g, f, h They will be analysed ascendingly in the following order: f < g f = h ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))) -> *3_0, rt in Omega(n1825_0 + n1825_0^2) Induction Base: p(gen_s:0':true:false2_0(+(2, 0)), gen_s:0':true:false2_0(+(1, 0))) Induction Step: p(gen_s:0':true:false2_0(+(2, +(n1825_0, 1))), gen_s:0':true:false2_0(+(1, +(n1825_0, 1)))) ->_R^Omega(1) s(s(p(if(gt(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))), gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))), if(not(gt(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0)))), id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_L^Omega(2 + n1825_0) s(s(p(if(true, gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))), if(not(gt(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0)))), id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(not(gt(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0)))), id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_L^Omega(2 + n1825_0) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(not(true), id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(if(true, false, true), id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(false, id(gen_s:0':true:false2_0(+(2, n1825_0))), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(false, gen_s:0':true:false2_0(+(2, n1825_0)), id(gen_s:0':true:false2_0(+(1, n1825_0))))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), if(false, gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0)))))) ->_R^Omega(1) s(s(p(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))))) ->_IH s(s(*3_0)) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) -> true, rt in Omega(1 + n1446_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: p, g, f, h They will be analysed ascendingly in the following order: f < g f = h ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^2, INF) ---------------------------------------- (24) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) -> true, rt in Omega(1 + n1446_0) p(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))) -> *3_0, rt in Omega(n1825_0 + n1825_0^2) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: h, g, f They will be analysed ascendingly in the following order: f < g f = h ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_s:0':true:false2_0(*(2, n11616_0))) -> false, rt in Omega(1 + n11616_0) Induction Base: h(gen_s:0':true:false2_0(*(2, 0))) ->_R^Omega(1) false Induction Step: h(gen_s:0':true:false2_0(*(2, +(n11616_0, 1)))) ->_R^Omega(1) f(gen_s:0':true:false2_0(+(1, *(2, n11616_0)))) ->_R^Omega(1) h(gen_s:0':true:false2_0(*(2, n11616_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: g(s(x), s(y)) -> if(and(f(s(x)), f(s(y))), t(g(k(minus(m(x, y), n(x, y)), s(s(0'))), k(n(s(x), s(y)), s(s(0'))))), g(minus(m(x, y), n(x, y)), n(s(x), s(y)))) n(0', y) -> 0' n(x, 0') -> 0' n(s(x), s(y)) -> s(n(x, y)) m(0', y) -> y m(x, 0') -> x m(s(x), s(y)) -> s(m(x, y)) k(0', s(y)) -> 0' k(s(x), s(y)) -> s(k(minus(x, y), s(y))) t(x) -> p(x, x) p(s(x), s(y)) -> s(s(p(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y))))) p(s(x), x) -> p(if(gt(x, x), id(x), id(x)), s(x)) p(0', y) -> y p(id(x), s(y)) -> s(p(x, if(gt(s(y), y), y, s(y)))) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) id(x) -> x if(true, x, y) -> x if(false, x, y) -> y not(x) -> if(x, false, true) and(x, false) -> false and(true, true) -> true f(0') -> true f(s(x)) -> h(x) h(0') -> false h(s(x)) -> f(x) gt(s(x), 0') -> true gt(0', y) -> false gt(s(x), s(y)) -> gt(x, y) Types: g :: s:0':true:false -> s:0':true:false -> s:0':true:false s :: s:0':true:false -> s:0':true:false if :: s:0':true:false -> s:0':true:false -> s:0':true:false -> s:0':true:false and :: s:0':true:false -> s:0':true:false -> s:0':true:false f :: s:0':true:false -> s:0':true:false t :: s:0':true:false -> s:0':true:false k :: s:0':true:false -> s:0':true:false -> s:0':true:false minus :: s:0':true:false -> s:0':true:false -> s:0':true:false m :: s:0':true:false -> s:0':true:false -> s:0':true:false n :: s:0':true:false -> s:0':true:false -> s:0':true:false 0' :: s:0':true:false p :: s:0':true:false -> s:0':true:false -> s:0':true:false gt :: s:0':true:false -> s:0':true:false -> s:0':true:false not :: s:0':true:false -> s:0':true:false id :: s:0':true:false -> s:0':true:false true :: s:0':true:false false :: s:0':true:false h :: s:0':true:false -> s:0':true:false hole_s:0':true:false1_0 :: s:0':true:false gen_s:0':true:false2_0 :: Nat -> s:0':true:false Lemmas: minus(gen_s:0':true:false2_0(n4_0), gen_s:0':true:false2_0(n4_0)) -> gen_s:0':true:false2_0(0), rt in Omega(1 + n4_0) m(gen_s:0':true:false2_0(n472_0), gen_s:0':true:false2_0(n472_0)) -> gen_s:0':true:false2_0(n472_0), rt in Omega(1 + n472_0) n(gen_s:0':true:false2_0(n1010_0), gen_s:0':true:false2_0(n1010_0)) -> gen_s:0':true:false2_0(n1010_0), rt in Omega(1 + n1010_0) gt(gen_s:0':true:false2_0(+(1, n1446_0)), gen_s:0':true:false2_0(n1446_0)) -> true, rt in Omega(1 + n1446_0) p(gen_s:0':true:false2_0(+(2, n1825_0)), gen_s:0':true:false2_0(+(1, n1825_0))) -> *3_0, rt in Omega(n1825_0 + n1825_0^2) h(gen_s:0':true:false2_0(*(2, n11616_0))) -> false, rt in Omega(1 + n11616_0) Generator Equations: gen_s:0':true:false2_0(0) <=> 0' gen_s:0':true:false2_0(+(x, 1)) <=> s(gen_s:0':true:false2_0(x)) The following defined symbols remain to be analysed: f, g They will be analysed ascendingly in the following order: f < g f = h