/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 260 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 368 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: numbers -> d(0) d(x) -> if(le(x, nr), x) if(true, x) -> cons(x, d(s(x))) if(false, x) -> nil le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0)))))), 0) ack(0, x) -> s(x) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(x, d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: cons/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: numbers :: cons:nil d :: 0':s -> cons:nil 0' :: 0':s if :: true:false -> 0':s -> cons:nil le :: 0':s -> 0':s -> true:false nr :: 0':s true :: true:false cons :: cons:nil -> cons:nil s :: 0':s -> 0':s false :: true:false nil :: cons:nil ack :: 0':s -> 0':s -> 0':s hole_cons:nil1_0 :: cons:nil hole_0':s2_0 :: 0':s hole_true:false3_0 :: true:false gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: d, le, ack They will be analysed ascendingly in the following order: le < d ---------------------------------------- (8) Obligation: TRS: Rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: numbers :: cons:nil d :: 0':s -> cons:nil 0' :: 0':s if :: true:false -> 0':s -> cons:nil le :: 0':s -> 0':s -> true:false nr :: 0':s true :: true:false cons :: cons:nil -> cons:nil s :: 0':s -> 0':s false :: true:false nil :: cons:nil ack :: 0':s -> 0':s -> 0':s hole_cons:nil1_0 :: cons:nil hole_0':s2_0 :: 0':s hole_true:false3_0 :: true:false gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: le, d, ack They will be analysed ascendingly in the following order: le < d ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) Induction Base: le(gen_0':s5_0(0), gen_0':s5_0(0)) ->_R^Omega(1) true Induction Step: le(gen_0':s5_0(+(n7_0, 1)), gen_0':s5_0(+(n7_0, 1))) ->_R^Omega(1) le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: numbers :: cons:nil d :: 0':s -> cons:nil 0' :: 0':s if :: true:false -> 0':s -> cons:nil le :: 0':s -> 0':s -> true:false nr :: 0':s true :: true:false cons :: cons:nil -> cons:nil s :: 0':s -> 0':s false :: true:false nil :: cons:nil ack :: 0':s -> 0':s -> 0':s hole_cons:nil1_0 :: cons:nil hole_0':s2_0 :: 0':s hole_true:false3_0 :: true:false gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: le, d, ack They will be analysed ascendingly in the following order: le < d ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: numbers -> d(0') d(x) -> if(le(x, nr), x) if(true, x) -> cons(d(s(x))) if(false, x) -> nil le(0', y) -> true le(s(x), 0') -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', x) -> s(x) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: numbers :: cons:nil d :: 0':s -> cons:nil 0' :: 0':s if :: true:false -> 0':s -> cons:nil le :: 0':s -> 0':s -> true:false nr :: 0':s true :: true:false cons :: cons:nil -> cons:nil s :: 0':s -> 0':s false :: true:false nil :: cons:nil ack :: 0':s -> 0':s -> 0':s hole_cons:nil1_0 :: cons:nil hole_0':s2_0 :: 0':s hole_true:false3_0 :: true:false gen_cons:nil4_0 :: Nat -> cons:nil gen_0':s5_0 :: Nat -> 0':s Lemmas: le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) Generator Equations: gen_cons:nil4_0(0) <=> nil gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) gen_0':s5_0(0) <=> 0' gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) The following defined symbols remain to be analysed: d, ack ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_0':s5_0(1), gen_0':s5_0(+(1, n910_0))) -> *6_0, rt in Omega(n910_0) Induction Base: ack(gen_0':s5_0(1), gen_0':s5_0(+(1, 0))) Induction Step: ack(gen_0':s5_0(1), gen_0':s5_0(+(1, +(n910_0, 1)))) ->_R^Omega(1) ack(gen_0':s5_0(0), ack(s(gen_0':s5_0(0)), gen_0':s5_0(+(1, n910_0)))) ->_IH ack(gen_0':s5_0(0), *6_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)