/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 256 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 18 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^2, INF) (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: lt(0, s(x)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0), s(0)) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: lt, times, plus, loop They will be analysed ascendingly in the following order: lt < loop plus < times times < loop ---------------------------------------- (6) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, times, plus, loop They will be analysed ascendingly in the following order: lt < loop plus < times times < loop ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) ->_R^Omega(1) true Induction Step: lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, times, plus, loop They will be analysed ascendingly in the following order: lt < loop plus < times times < loop ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, times, loop They will be analysed ascendingly in the following order: plus < times times < loop ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n257_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n257_0, b)), rt in Omega(1 + n257_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n257_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n257_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c258_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) plus(gen_0':s3_0(n257_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n257_0, b)), rt in Omega(1 + n257_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, loop They will be analysed ascendingly in the following order: times < loop ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_0':s3_0(n800_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n800_0, b)), rt in Omega(1 + b*n800_0 + n800_0) Induction Base: times(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_0':s3_0(+(n800_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) plus(gen_0':s3_0(b), times(gen_0':s3_0(n800_0), gen_0':s3_0(b))) ->_IH plus(gen_0':s3_0(b), gen_0':s3_0(*(c801_0, b))) ->_L^Omega(1 + b) gen_0':s3_0(+(b, *(n800_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) plus(gen_0':s3_0(n257_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n257_0, b)), rt in Omega(1 + n257_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: times, loop They will be analysed ascendingly in the following order: times < loop ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^2, INF) ---------------------------------------- (20) Obligation: TRS: Rules: lt(0', s(x)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) times(0', y) -> 0' times(s(x), y) -> plus(y, times(x, y)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) fac(x) -> loop(x, s(0'), s(0')) loop(x, c, y) -> if(lt(x, c), x, c, y) if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) if(true, x, c, y) -> y Types: lt :: 0':s -> 0':s -> true:false 0' :: 0':s s :: 0':s -> 0':s true :: true:false false :: true:false times :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s fac :: 0':s -> 0':s loop :: 0':s -> 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s hole_true:false1_0 :: true:false hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) plus(gen_0':s3_0(n257_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n257_0, b)), rt in Omega(1 + n257_0) times(gen_0':s3_0(n800_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n800_0, b)), rt in Omega(1 + b*n800_0 + n800_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: loop