/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 322 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 412 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x p(0) -> 0 div(x, y) -> quot(x, y, 0) quot(s(x), s(y), z) -> quot(minus(p(ack(0, x)), y), s(y), s(z)) quot(0, s(y), z) -> z ack(0, x) -> s(x) ack(0, x) -> plus(x, s(0)) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, plus, quot, ack They will be analysed ascendingly in the following order: plus < minus minus < quot plus < ack ack < quot ---------------------------------------- (6) Obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, minus, quot, ack They will be analysed ascendingly in the following order: plus < minus minus < quot plus < ack ack < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) plus(gen_0':s3_0(n5_0), s(gen_0':s3_0(b))) ->_IH gen_0':s3_0(+(+(b, 1), c6_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, minus, quot, ack They will be analysed ascendingly in the following order: plus < minus minus < quot plus < ack ack < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: minus, quot, ack They will be analysed ascendingly in the following order: minus < quot ack < quot ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s3_0(n870_0), gen_0':s3_0(n870_0)) -> gen_0':s3_0(0), rt in Omega(1 + n870_0) Induction Base: minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_0':s3_0(+(n870_0, 1)), gen_0':s3_0(+(n870_0, 1))) ->_R^Omega(1) minus(gen_0':s3_0(n870_0), gen_0':s3_0(n870_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) minus(gen_0':s3_0(n870_0), gen_0':s3_0(n870_0)) -> gen_0':s3_0(0), rt in Omega(1 + n870_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: ack, quot They will be analysed ascendingly in the following order: ack < quot ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_0':s3_0(1), gen_0':s3_0(+(1, n1304_0))) -> *4_0, rt in Omega(n1304_0) Induction Base: ack(gen_0':s3_0(1), gen_0':s3_0(+(1, 0))) Induction Step: ack(gen_0':s3_0(1), gen_0':s3_0(+(1, +(n1304_0, 1)))) ->_R^Omega(1) ack(gen_0':s3_0(0), ack(s(gen_0':s3_0(0)), gen_0':s3_0(+(1, n1304_0)))) ->_IH ack(gen_0':s3_0(0), *4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: minus(minus(x, y), z) -> minus(x, plus(y, z)) minus(0', y) -> 0' minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) plus(0', y) -> y plus(s(x), y) -> plus(x, s(y)) plus(s(x), y) -> s(plus(y, x)) zero(s(x)) -> false zero(0') -> true p(s(x)) -> x p(0') -> 0' div(x, y) -> quot(x, y, 0') quot(s(x), s(y), z) -> quot(minus(p(ack(0', x)), y), s(y), s(z)) quot(0', s(y), z) -> z ack(0', x) -> s(x) ack(0', x) -> plus(x, s(0')) ack(s(x), 0') -> ack(x, s(0')) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) Types: minus :: 0':s -> 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s zero :: 0':s -> false:true false :: false:true true :: false:true p :: 0':s -> 0':s div :: 0':s -> 0':s -> 0':s quot :: 0':s -> 0':s -> 0':s -> 0':s ack :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s hole_false:true2_0 :: false:true gen_0':s3_0 :: Nat -> 0':s Lemmas: plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n5_0, b)), rt in Omega(1 + n5_0) minus(gen_0':s3_0(n870_0), gen_0':s3_0(n870_0)) -> gen_0':s3_0(0), rt in Omega(1 + n870_0) ack(gen_0':s3_0(1), gen_0':s3_0(+(1, n1304_0))) -> *4_0, rt in Omega(n1304_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: quot